Abstract:
We consider Bessel systems in a Banach space and study their operator and projective characteristics. Using an operator construction for the continuation of the system, we prove an analog of Schur's theorem on continuable systems.
Keywords:
Bessel system, Banach space, continuation of a Bessel system, linear operator, model space, Schur's theorem.
\Bibitem{Ter12}
\by P.~A.~Terekhin
\paper On Bessel Systems in a Banach Space
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 2
\pages 285--296
\mathnet{http://mi.mathnet.ru/mzm7697}
\crossref{https://doi.org/10.4213/mzm7697}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201414}
\elib{https://elibrary.ru/item.asp?id=20731484}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 2
\pages 272--282
\crossref{https://doi.org/10.1134/S0001434612010270}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303478400027}
\elib{https://elibrary.ru/item.asp?id=17977455}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857515158}
Linking options:
https://www.mathnet.ru/eng/mzm7697
https://doi.org/10.4213/mzm7697
https://www.mathnet.ru/eng/mzm/v91/i2/p285
This publication is cited in the following 3 articles:
Ismailov M.I., “On Uncountable K-Bessel and K-Hilbert Systems in Nonseparable Banach Spaces”, Proc. Inst. Math. Mech., 45:2 (2019), 192–204
Speransky K.S., Terekhin P.A., “A Representing System Generated By the Szego Kernel For the Hardy Space”, Indag. Math.-New Ser., 29:5 (2018), 1318–1325
P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400