|
This article is cited in 4 scientific papers (total in 4 papers)
Interpolation by polyhedral functions
V. F. Babenkoa, A. A. Ligunb a Dnepropetrovsk State University
b Dneprodzerzhinsk State Technical University
Abstract:
A polyhedral function $l_{P(\Delta_n)}(f)$. interpolating a function $f$, defined on a polygon $\Phi$, is defined by a set of interpolating nodes $\Delta_n\subset\Phi$ and a partition $P(\Delta_n)$ of the polygon $\Phi$ into triangles with vertices at the points of $\Delta_n$. In this article we will compute for convex moduli of continuity the quatities
$$
E(H_\Phi^\omega;P(\Delta_n))=\sup_{f\in H_\Phi^\omega}\|f-l_{P(\Delta_n)}(f)\|,
$$
and also give an asymptotic estimate of the quantities
$$
E_n(H_\Phi^\omega)=\inf_{\Delta_n}\inf_{P(\Delta_n)}E(H_\Phi^\omega;P(\Delta_n)).
$$
Received: 04.11.1974
Citation:
V. F. Babenko, A. A. Ligun, “Interpolation by polyhedral functions”, Mat. Zametki, 18:6 (1975), 803–814; Math. Notes, 18:6 (1975), 1068–1074
Linking options:
https://www.mathnet.ru/eng/mzm7692 https://www.mathnet.ru/eng/mzm/v18/i6/p803
|
Statistics & downloads: |
Abstract page: | 301 | Full-text PDF : | 156 | First page: | 1 |
|