Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 6, Pages 803–814 (Mi mzm7692)  

This article is cited in 4 scientific papers (total in 4 papers)

Interpolation by polyhedral functions

V. F. Babenkoa, A. A. Ligunb

a Dnepropetrovsk State University
b Dneprodzerzhinsk State Technical University
Full-text PDF (699 kB) Citations (4)
Abstract: A polyhedral function lP(Δn)(f). interpolating a function f, defined on a polygon Φ, is defined by a set of interpolating nodes ΔnΦ and a partition P(Δn) of the polygon Φ into triangles with vertices at the points of Δn. In this article we will compute for convex moduli of continuity the quatities
E(HωΦ;P(Δn))=supfHωΦflP(Δn)(f),
and also give an asymptotic estimate of the quantities
En(HωΦ)=infΔninfP(Δn)E(HωΦ;P(Δn)).
Received: 04.11.1974
English version:
Mathematical Notes, 1975, Volume 18, Issue 6, Pages 1068–1074
DOI: https://doi.org/10.1007/BF01099983
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: V. F. Babenko, A. A. Ligun, “Interpolation by polyhedral functions”, Mat. Zametki, 18:6 (1975), 803–814; Math. Notes, 18:6 (1975), 1068–1074
Citation in format AMSBIB
\Bibitem{BabLig75}
\by V.~F.~Babenko, A.~A.~Ligun
\paper Interpolation by polyhedral functions
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 6
\pages 803--814
\mathnet{http://mi.mathnet.ru/mzm7692}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=397234}
\zmath{https://zbmath.org/?q=an:0318.41024}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 6
\pages 1068--1074
\crossref{https://doi.org/10.1007/BF01099983}
Linking options:
  • https://www.mathnet.ru/eng/mzm7692
  • https://www.mathnet.ru/eng/mzm/v18/i6/p803
  • This publication is cited in the following 4 articles:
    1. Borodachov S., “Optimal Recovery of Three Times Differentiable Functions on a Convex Polytope Inscribed in a Sphere”, J. Approx. Theory, 234 (2018), 51–63  crossref  isi
    2. Babenko V.F., Leskevich T.Yu., “Approximation of Some Classes of Functions of Many Variables by Harmonic Splines”, Ukr. Math. J., 64:8 (2013), 1151–1167  crossref  isi
    3. Sergiy Borodachov, Tatyana Sorokina, “An optimal multivariate spline method of recovery of twice differentiable functions”, Bit Numer Math, 51:3 (2011), 497  crossref
    4. A. S. Loginov, “Interpolation of continuous functions by Bernstein polynomials on triangulable domains”, Math. USSR-Sb., 74:1 (1993), 57–61  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :170
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025