Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 5, Pages 775–780 (Mi mzm7689)  

Bounds for the spectral abscissa of an element in a Banach algebra

K. L. Olifirov

Leningrad State University
Abstract: For an arbitrary element $x$ with spectrum $\operatorname{sp}(x)$ in a Banach algebra with identity e ne 0 we define the upper (lower) spectral abscissa $\sigma_{\substack{+\\(-)}}(x)=\max\limits_{\displaystyle(\min)}\operatorname{Re}\lambda$, $\lambda\in\operatorname{sp}(x)$. With the aid of the spectral radius $\rho(x)=\max\limits_{\lambda\in\operatorname{sp}(x)}|\lambda|=\lim\limits_{n\to+\infty}\|x^n\|^{1/n}$ we prove the following bounds: $\gamma_-(x)\le\sigma_-(x)\le\Gamma_-(x)\le\Gamma_+(x)\le\sigma_+(x)\le\gamma_+(x)$, где $\Gamma_{(\pm)}(x)=(2\delta_{(\pm)})^{-1}(\rho_{\delta_{(\pm)}}^2-\delta_{(\pm)}^2-\rho_0^2)$ $(\delta_{(\pm)}\ne0)$, $\gamma_{(\pm)}(x)=(\pm)\rho_{\delta_{(\pm)}}-\delta_{(\pm)}$, $\delta_+\ge0$, $\delta_-\le0$ и $\rho_{\delta_{(\pm)}}=\rho(x+e\delta_{(\pm)}$. We mention a case where equality is achieved, some corollaries,and discuss the sharpness of the bounds: for every $\varepsilon>0$ there is a delta: $\delta:|\delta|\ge\rho_0^2/2\varepsilon$, such that $\Delta:=|\gamma_{(\pm)}(x)-\Gamma_{(\pm)}(x)|<\varepsilon$ and conversely, if the bounds are computed for some $\delta\ne0$, then $\Delta\le\rho_0^2/2|\delta|$. An example is considered.
Received: 11.07.1974
English version:
Mathematical Notes, 1975, Volume 18, Issue 5, Pages 1050–1053
DOI: https://doi.org/10.1007/BF01153575
Bibliographic databases:
UDC: 517.948.35
Language: Russian
Citation: K. L. Olifirov, “Bounds for the spectral abscissa of an element in a Banach algebra”, Mat. Zametki, 18:5 (1975), 775–780; Math. Notes, 18:5 (1975), 1050–1053
Citation in format AMSBIB
\Bibitem{Oli75}
\by K.~L.~Olifirov
\paper Bounds for the spectral abscissa of an element in a~Banach algebra
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 5
\pages 775--780
\mathnet{http://mi.mathnet.ru/mzm7689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=399859}
\zmath{https://zbmath.org/?q=an:0322.46054}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 5
\pages 1050--1053
\crossref{https://doi.org/10.1007/BF01153575}
Linking options:
  • https://www.mathnet.ru/eng/mzm7689
  • https://www.mathnet.ru/eng/mzm/v18/i5/p775
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024