|
Bounds for the spectral abscissa of an element in a Banach algebra
K. L. Olifirov Leningrad State University
Abstract:
For an arbitrary element x with spectrum sp(x) in a Banach algebra with identity e ne 0 we define the upper (lower) spectral abscissa σ+(−)(x)=max(min)Reλ, λ∈sp(x). With the aid of the spectral radius ρ(x)=maxλ∈sp(x)|λ|=limn→+∞‖ we prove the following bounds: \gamma_-(x)\le\sigma_-(x)\le\Gamma_-(x)\le\Gamma_+(x)\le\sigma_+(x)\le\gamma_+(x), где \Gamma_{(\pm)}(x)=(2\delta_{(\pm)})^{-1}(\rho_{\delta_{(\pm)}}^2-\delta_{(\pm)}^2-\rho_0^2) (\delta_{(\pm)}\ne0), \gamma_{(\pm)}(x)=(\pm)\rho_{\delta_{(\pm)}}-\delta_{(\pm)}, \delta_+\ge0, \delta_-\le0 и \rho_{\delta_{(\pm)}}=\rho(x+e\delta_{(\pm)}. We mention a case where equality is achieved, some corollaries,and discuss the sharpness of the bounds: for every \varepsilon>0 there is a delta: \delta:|\delta|\ge\rho_0^2/2\varepsilon, such that \Delta:=|\gamma_{(\pm)}(x)-\Gamma_{(\pm)}(x)|<\varepsilon and conversely, if the bounds are computed for some \delta\ne0, then \Delta\le\rho_0^2/2|\delta|. An example is considered.
Received: 11.07.1974
Citation:
K. L. Olifirov, “Bounds for the spectral abscissa of an element in a Banach algebra”, Mat. Zametki, 18:5 (1975), 775–780; Math. Notes, 18:5 (1975), 1050–1053
Linking options:
https://www.mathnet.ru/eng/mzm7689 https://www.mathnet.ru/eng/mzm/v18/i5/p775
|
Statistics & downloads: |
Abstract page: | 240 | Full-text PDF : | 84 | First page: | 1 |
|