Abstract:
The following conditions are shown to be equivalent: 1) ring A is generalized uniserial (not necessarily artinian); 2) every finitely presented A module is semiserial; 3) A is semiperfect and the projective cover of every indecomposable finitely presented module is indecomposable.
This publication is cited in the following 8 articles:
A. I. Generalov, I. M. Zilberbord, “Generalized “stacked bases” theorem for modules over semiperfect rings”, Communications in Algebra, 49:6 (2021), 2597
I. M. Zilberbord, “Stacked decomposition theorem for modules over serial left noetherian rings”, J. Math. Sci. (N. Y.), 219:4 (2016), 519–522
G. E. Puninski, “Pure projective modules over exceptional uniserial noncoherent rings”, J. Math. Sci., 187:2 (2012), 157–168
A. A. Tuganbaev, “Modules over semiserial rings”, Math. Notes, 65:6 (1999), 739–748
A. I. Generalov, “Krull dimension of the module category over right noetherian serial rings”, J. Math. Sci. (New York), 95:2 (1999), 2088–2095
K. I. Beidar, A. V. Mikhalev, G. E. Puninskii, “Logicheskie aspekty teorii kolets i modulei”, Fundament. i prikl. matem., 1:1 (1995), 1–62
G. E. Puninskii, “Polutsepnye koltsa Krullya–Shmidta i chisto-in'ektivnye moduli”, Fundament. i prikl. matem., 1:2 (1995), 471–489
G. E. Puninskii, “Rings defined by purities”, Russian Math. Surveys, 48:6 (1993), 181–182