Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 5, Pages 705–710 (Mi mzm7682)  

This article is cited in 8 scientific papers (total in 8 papers)

Generalized uniserial rings

Yu. A. Drozd

Kiev State University
Full-text PDF (511 kB) Citations (8)
Abstract: The following conditions are shown to be equivalent: 1) ring A is generalized uniserial (not necessarily artinian); 2) every finitely presented A module is semiserial; 3) A is semiperfect and the projective cover of every indecomposable finitely presented module is indecomposable.
Received: 15.04.1975
English version:
Mathematical Notes, 1975, Volume 18, Issue 5, Pages 1011–1014
DOI: https://doi.org/10.1007/BF01153568
Bibliographic databases:
UDC: 512
Language: Russian
Citation: Yu. A. Drozd, “Generalized uniserial rings”, Mat. Zametki, 18:5 (1975), 705–710; Math. Notes, 18:5 (1975), 1011–1014
Citation in format AMSBIB
\Bibitem{Dro75}
\by Yu.~A.~Drozd
\paper Generalized uniserial rings
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 5
\pages 705--710
\mathnet{http://mi.mathnet.ru/mzm7682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=404325}
\zmath{https://zbmath.org/?q=an:0318.16009}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 5
\pages 1011--1014
\crossref{https://doi.org/10.1007/BF01153568}
Linking options:
  • https://www.mathnet.ru/eng/mzm7682
  • https://www.mathnet.ru/eng/mzm/v18/i5/p705
  • This publication is cited in the following 8 articles:
    1. A. I. Generalov, I. M. Zilberbord, “Generalized “stacked bases” theorem for modules over semiperfect rings”, Communications in Algebra, 49:6 (2021), 2597  crossref
    2. I. M. Zilberbord, “Stacked decomposition theorem for modules over serial left noetherian rings”, J. Math. Sci. (N. Y.), 219:4 (2016), 519–522  mathnet  crossref  mathscinet
    3. G. E. Puninski, “Pure projective modules over exceptional uniserial noncoherent rings”, J. Math. Sci., 187:2 (2012), 157–168  mathnet  crossref
    4. A. A. Tuganbaev, “Modules over semiserial rings”, Math. Notes, 65:6 (1999), 739–748  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. A. I. Generalov, “Krull dimension of the module category over right noetherian serial rings”, J. Math. Sci. (New York), 95:2 (1999), 2088–2095  mathnet  crossref  mathscinet  zmath
    6. K. I. Beidar, A. V. Mikhalev, G. E. Puninskii, “Logicheskie aspekty teorii kolets i modulei”, Fundament. i prikl. matem., 1:1 (1995), 1–62  mathnet  mathscinet  zmath  elib
    7. G. E. Puninskii, “Polutsepnye koltsa Krullya–Shmidta i chisto-in'ektivnye moduli”, Fundament. i prikl. matem., 1:2 (1995), 471–489  mathnet  mathscinet  zmath
    8. G. E. Puninskii, “Rings defined by purities”, Russian Math. Surveys, 48:6 (1993), 181–182  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :137
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025