Abstract:
We assume that E1 and E2 are Banach spaces, a:E1→E2 is a continuous linear surjective operator, f:E1→E2 is a nonlinear completely continuous operator. In this paper, we study existence problems for the equation a(x)=f(x) and estimate the topological dimension dim of the set of solutions.
\Bibitem{Gel01}
\by B.~D.~Gel'man
\paper On a Class of Operator Equations
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 4
\pages 544--552
\mathnet{http://mi.mathnet.ru/mzm766}
\crossref{https://doi.org/10.4213/mzm766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1884191}
\zmath{https://zbmath.org/?q=an:1035.47045}
\elib{https://elibrary.ru/item.asp?id=13364605}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 4
\pages 494--501
\crossref{https://doi.org/10.1023/A:1012376602648}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172164200022}
Linking options:
https://www.mathnet.ru/eng/mzm766
https://doi.org/10.4213/mzm766
https://www.mathnet.ru/eng/mzm/v70/i4/p544
This publication is cited in the following 6 articles:
B. D. Gel'man, “On topological properties of the set of solutions of operator inclusions with a multi-valued Lipschitz right-hand side”, Russian Math. (Iz. VUZ), 65:5 (2021), 4–7
B. D. Gel'man, “A Hybrid Fixed-Point Theorem for Set-Valued Maps”, Math. Notes, 101:6 (2017), 951–959
B. D. Gel'man, “How to Approach Nonstandard Boundary Value Problems”, Funct. Anal. Appl., 50:1 (2016), 31–38
Milojevic P.S., “Dimension of the Set of Positive Solutions To Nonlinear Equations and Applications”, Electron. J. Differ. Equ., 2016
Gelman B.D., Rydanova S.S., “Ob operatornykh uravneniyakh s syurektivnymi operatorami”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2012, no. 1, 93–93
On operator equations with surjective operators
Gelman B.D., Kalabukhova S.N., “Ob uplotnyayuschikh vozmuscheniyakh lineinykh syur'ektivnykh operatorov”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2011, no. 1, 120–127
On condensing perturbations of linear surjective operators