Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 2, Pages 243–252 (Mi mzm7647)  

This article is cited in 2 scientific papers (total in 2 papers)

Boundary values of generalized solutions of a homogeneous Sturm–Liouville equation in a space of vector functions

V. I. Gorbachuk

Institute of Mathematics, Academy of Sciences of Ukrainian SSR
Full-text PDF (650 kB) Citations (2)
Abstract: We consider a differential equation of the form y+A2y=0, where A is a self-adjoint operator in a Hilbert space H. We show that each generalized solution of this equation inw Wm(0,b) (0<b<, m) has boundary values in the space H_{-m-1/2}, where H_j (-\infty<j<\infty) is the Hilbert scale of spaces generated by the operator A, and W_{-m}(0,b) is the space of continuous linear functionals on order \mathring W_m(0,b), the completion of the space of infinitely differentiable vector functions with compact support with respect to the norm \|u\|_{W_m(0,b)}=(\|u\|_{L_2(H_m,(0,b))}+\|u\|_{L_2(H,(0,b))}^{(m)}). It follows that each function u(t,x) which is harmonic in the strip G=[0,b]\times(-\infty,\infty) and which is in the space that is dual to order \mathring W_2^m(G) has limiting values as t\to0 and t\to b in the space W_2^{-m-1/2}(-\infty,\infty).
Received: 27.07.1974
English version:
Mathematical Notes, 1975, Volume 18, Issue 2, Pages 732–737
DOI: https://doi.org/10.1007/BF01818040
Bibliographic databases:
UDC: 517.947.5.37
Language: Russian
Citation: V. I. Gorbachuk, “Boundary values of generalized solutions of a homogeneous Sturm–Liouville equation in a space of vector functions”, Mat. Zametki, 18:2 (1975), 243–252; Math. Notes, 18:2 (1975), 732–737
Citation in format AMSBIB
\Bibitem{Gor75}
\by V.~I.~Gorbachuk
\paper Boundary values of generalized solutions of a~homogeneous Sturm--Liouville equation in a~space of vector functions
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 2
\pages 243--252
\mathnet{http://mi.mathnet.ru/mzm7647}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=390410}
\zmath{https://zbmath.org/?q=an:0324.34057}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 2
\pages 732--737
\crossref{https://doi.org/10.1007/BF01818040}
Linking options:
  • https://www.mathnet.ru/eng/mzm7647
  • https://www.mathnet.ru/eng/mzm/v18/i2/p243
  • This publication is cited in the following 2 articles:
    1. V. I. Gorbachuk, M. L. Gorbachuk, “Boundary values of solutions of some classes of differential equations”, Math. USSR-Sb., 31:1 (1977), 109–133  mathnet  crossref  mathscinet  zmath  isi
    2. V. I. Gorbachuk, M. L. Gorbachuk, “Some questions of the spectral theory of differential equations of elliptic type in the space of vector functions on a finite interval”, Ukr Math J, 28:1 (1976), 9  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :92
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025