Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 2, Pages 243–252 (Mi mzm7647)  

This article is cited in 2 scientific papers (total in 2 papers)

Boundary values of generalized solutions of a homogeneous Sturm–Liouville equation in a space of vector functions

V. I. Gorbachuk

Institute of Mathematics, Academy of Sciences of Ukrainian SSR
Full-text PDF (650 kB) Citations (2)
Abstract: We consider a differential equation of the form $-y''+A^2y=0$, where $A$ is a self-adjoint operator in a Hilbert space $H$. We show that each generalized solution of this equation inw $W_{-m}(0,b)$ ($0<b<\infty$, $m\ge0$) has boundary values in the space $H_{-m-1/2}$, where $H_j$ ($-\infty<j<\infty$) is the Hilbert scale of spaces generated by the operator $A$, and $W_{-m}(0,b)$ is the space of continuous linear functionals on order $\mathring W_m(0,b)$, the completion of the space of infinitely differentiable vector functions with compact support with respect to the norm $\|u\|_{W_m(0,b)}=(\|u\|_{L_2(H_m,(0,b))}+\|u\|_{L_2(H,(0,b))}^{(m)})$. It follows that each function $u(t,x)$ which is harmonic in the strip $G=[0,b]\times(-\infty,\infty)$ and which is in the space that is dual to order $\mathring W_2^m(G)$ has limiting values as $t\to0$ and $t\to b$ in the space $W_2^{-m-1/2}(-\infty,\infty)$.
Received: 27.07.1974
English version:
Mathematical Notes, 1975, Volume 18, Issue 2, Pages 732–737
DOI: https://doi.org/10.1007/BF01818040
Bibliographic databases:
UDC: 517.947.5.37
Language: Russian
Citation: V. I. Gorbachuk, “Boundary values of generalized solutions of a homogeneous Sturm–Liouville equation in a space of vector functions”, Mat. Zametki, 18:2 (1975), 243–252; Math. Notes, 18:2 (1975), 732–737
Citation in format AMSBIB
\Bibitem{Gor75}
\by V.~I.~Gorbachuk
\paper Boundary values of generalized solutions of a~homogeneous Sturm--Liouville equation in a~space of vector functions
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 2
\pages 243--252
\mathnet{http://mi.mathnet.ru/mzm7647}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=390410}
\zmath{https://zbmath.org/?q=an:0324.34057}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 2
\pages 732--737
\crossref{https://doi.org/10.1007/BF01818040}
Linking options:
  • https://www.mathnet.ru/eng/mzm7647
  • https://www.mathnet.ru/eng/mzm/v18/i2/p243
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024