Abstract:
In the paper a cubic model is constructed for a germ of a real subvariety in a complex space. It is shown that in its range of codimensions this model possesses the full spectrum of properties similar to well-known properties of tangent quadrics.
\Bibitem{Bel01}
\by V.~K.~Beloshapka
\paper A Cubic Model of a Real Variety
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 4
\pages 503--519
\mathnet{http://mi.mathnet.ru/mzm763}
\crossref{https://doi.org/10.4213/mzm763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1884188}
\zmath{https://zbmath.org/?q=an:1033.32027}
\elib{https://elibrary.ru/item.asp?id=13378697}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 4
\pages 457--470
\crossref{https://doi.org/10.1023/A:1012320517670}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172164200019}
Linking options:
https://www.mathnet.ru/eng/mzm763
https://doi.org/10.4213/mzm763
https://www.mathnet.ru/eng/mzm/v70/i4/p503
This publication is cited in the following 13 articles:
Beloshapka V.K., “Polynomial Model Cr-Manifolds With the Rigidity Condition”, Russ. J. Math. Phys., 26:1 (2019), 1–8
Beloshapka V.K., “Cubic Model Cr-Manifolds Without the Assumption of Complete Nondegeneracy”, Russ. J. Math. Phys., 25:2 (2018), 148–157
I. B. Mamai, “Moduli spaces of model surfaces with one-dimensional complex tangent”, Izv. Math., 77:2 (2013), 354–377
V. K. Beloshapka, “Model-surface method: An infinite-dimensional version”, Proc. Steklov Inst. Math., 279 (2012), 14–24
Beloshapka V.K., Kossovskiy I.G., “Homogeneous Hypersurfaces in C-3, Associated with a Model CR-Cubic”, J Geom Anal, 20:3 (2010), 538–564
I. G. Kossovskii, “On envelopes of holomorphy of model manifolds”, Izv. Math., 71:3 (2007), 545–571
V. K. Beloshapka, “A Counterexample to the Dimension Conjecture”, Math. Notes, 81:1 (2007), 117–120
R. V. Gammel', I. G. Kossovskii, “The Envelope of Holomorphy of a Model Third-Degree Surface and the Rigidity Phenomenon”, Proc. Steklov Inst. Math., 253 (2006), 22–36
V. K. Beloshapka, “Universal Models For Real Submanifolds”, Math. Notes, 75:4 (2004), 475–488
E. N. Shananina, “Polynomial Models of Degree 5 and Algebras of Their Automorphisms”, Math. Notes, 75:5 (2004), 702–716
V. K. Beloshapka, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems”, Russian Math. Surveys, 57:1 (2002), 1–41
V. K. Beloshapka, “A Quasiperiodic System of Polynomial Models of CR-Manifolds”, Proc. Steklov Inst. Math., 235 (2001), 1–28
V. K. Beloshapka, “Polynomial models of real manifolds”, Izv. Math., 65:4 (2001), 641–657