|
This article is cited in 1 scientific paper (total in 1 paper)
Sufficient conditions for absolute asymptotic stability of linear equations in a Banach space
V. E. Slyusarchuk Chernovtsy State University
Abstract:
For a linear differential equation of the type
\begin{equation}
\frac{dx}{dt}=A_0x(t)+A_1x(t-\Delta_1)+\dots+A_nx(t-\Delta_n)\tag{1}
\end{equation}
we establish the following
\underline {THEOREM}. If
$$
\overline{\bigcup_{|z_1|=\dots=|z_n|=1}\sigma\Bigl(A_0+\sum_{k=1}^nz_kA_k\Bigl)}\subset\{\lambda:\operatorname{Re}\lambda<0\},
$$
then system (1) is absolutely asymptotically stable.
Received: 20.05.1974
Citation:
V. E. Slyusarchuk, “Sufficient conditions for absolute asymptotic stability of linear equations in a Banach space”, Mat. Zametki, 17:6 (1975), 919–923; Math. Notes, 17:6 (1975), 552–554
Linking options:
https://www.mathnet.ru/eng/mzm7612 https://www.mathnet.ru/eng/mzm/v17/i6/p919
|
|