|
This article is cited in 2 scientific papers (total in 2 papers)
On the Dimension of Nilpotent Algebras
B. Amberga, L. S. Kazarinb a Johannes Gutenberg Universität Mainz
b Yaroslavl State Technical University
Abstract:
The Eggert conjecture claims that a finite commutative algebra $R$ over a field of prime characteristic $p$ has the property $\dim R\ge p\dim R^{(1)}$, where $R^{(1)}$ is the subspace of $R$ spanned by the $p$th powers of elements of $R$. We obtain results related to this conjecture and results on nilpotent algebras of rather high nilpotency class.
Received: 28.11.2000
Citation:
B. Amberg, L. S. Kazarin, “On the Dimension of Nilpotent Algebras”, Mat. Zametki, 70:4 (2001), 483–490; Math. Notes, 70:4 (2001), 439–446
Linking options:
https://www.mathnet.ru/eng/mzm761https://doi.org/10.4213/mzm761 https://www.mathnet.ru/eng/mzm/v70/i4/p483
|
Statistics & downloads: |
Abstract page: | 448 | Full-text PDF : | 192 | References: | 67 | First page: | 1 |
|