|
Free $f$-modules
A. V. Mikhalev, M. A. Shatalova M. V. Lomonosov Moscow State University
Abstract:
Let $R$ be a directed ring whose cone of positive elements is strict and satisfies Ore's condition. The main result: there exists a freef-module over an $o$-module $_RM$ with cone $P_M$ if and only if $P_M$ is half-closed (this generalizes Vainberg's theorem for ordered Abelian groups). In this connection various characterizations off-modules with strict cones are given.
Received: 17.07.1974
Citation:
A. V. Mikhalev, M. A. Shatalova, “Free $f$-modules”, Mat. Zametki, 17:6 (1975), 873–885; Math. Notes, 17:6 (1975), 526–532
Linking options:
https://www.mathnet.ru/eng/mzm7607 https://www.mathnet.ru/eng/mzm/v17/i6/p873
|
Statistics & downloads: |
Abstract page: | 226 | Full-text PDF : | 74 | First page: | 1 |
|