|
This article is cited in 6 scientific papers (total in 6 papers)
Estimate of a complete rational trigonometric su
V. I. Nechaev V. A. Steklov Mathematical Institute, Academy of Sciences of the USSR,
Abstract:
Supposef is a polynomial of degree $n\ge3$ with integral coefficientsa $a_0,a_1,\dots,a_n$; $q$ is a natural number; ($a_1,\dots,a_n, q)=1$ $f(0)=0$. It is proved that
$$
\Bigl|\sum_{x=1}^qe^{2\pi if(x)/q}\Bigr|<e^{5n^2/\ln n}q^{1-1/n}.
$$
Received: 03.12.1974
Citation:
V. I. Nechaev, “Estimate of a complete rational trigonometric su”, Mat. Zametki, 17:6 (1975), 839–849; Math. Notes, 17:6 (1975), 504–511
Linking options:
https://www.mathnet.ru/eng/mzm7604 https://www.mathnet.ru/eng/mzm/v17/i6/p839
|
|