Abstract:
It is shown that if a Riemann space Vn admits a reduced almost geodesic mapping $\Pi_2$ onto a symmetric Riemann space $\overline V_n$, then $\overline V_n$ has constant curvature, and $V_n$ is itself a symmetric space.
This publication is cited in the following 11 articles:
L. Ryparova, I. Mikesh, P. Peshka, “Pochti geodezicheskie krivye i geodezicheskie otobrazheniya”, Materialy Mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Levona Sergeevicha Atanasyana (15 iyulya 1921 g.—5 iyulya 1998 g.). Moskva, 1–4 noyabrya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 221, VINITI RAN, M., 2023, 93–103
V. E. Berezovskii, S. V. Leschenko, I. Mikesh, “O kanonicheskikh pochti geodezicheskikh otobrazheniyakh pervogo tipa prostranstv affinnoi svyaznosti, pri kotorykh sokhranyaetsya tenzor Rimana”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 226, VINITI RAN, M., 2023, 23–33
Patrik Peska, Vladimir Berezovski, Yevhen Cherevko, Milos Petrovic, “Canonical F-planar mappings of spaces with affine connection onto 3-symmetric spaces”, Filomat, 37:20 (2023), 6835
J. Mikeš, N. I. Guseva, P. Peška, L. Ryparova, “Almost Geodesic Mappings and Projections of the Sphere”, Math. Notes, 111:3 (2022), 498–502
V. E. Berezovskii, I. A. Kuzmina, J. Mikeš, “Canonical F-Planar Mappings of Spaces with Affine Connection to Two Symmetric Spaces”, Lobachevskii J Math, 43:3 (2022), 533
Vladimir Berezovski, Yevhen Cherevko, Irena Hinterleitner, Josef Mikes, “Canonical almost geodesic mappings of the first type onto generalized Ricci symmetric spaces”, Filomat, 36:4 (2022), 1089
P. Peška, J. Mikeš, L. Rýparová, “Almost Geodesic Curves as Intersections of n-Dimensional Spheres”, Lobachevskii J Math, 43:3 (2022), 687
Berezovski V. Cherevko Y. Leshchenko S. Mikes J., “Canonical Almost Geodesic Mappings of the First Type of Spaces With Affine Connection Onto Generalized 2-Ricci-Symmetric Spaces”, Proceedings of the Twenty-Second International Conference on Geometry, Integrability and Quantization, Proceedings of the International Conference on Geometry Integrability and Quantization, 22, ed. Mladenov I. Pulov V. Yoshioka A., Inst Biophysics & Biomedical Engineering Bulgarian Acad Sciences, 2021, 78–87
Berezovski V. Cherevko Y. Mikes J. Ryparova L., “Canonical Almost Geodesic Mappings of the First Type of Spaces With Affine Connections Onto Generalized M-Ricci-Symmetric Spaces”, Mathematics, 9:4 (2021), 437
Berezovski V. Mikes J. Ryparova L. Sabykanov A., “On Canonical Almost Geodesic Mappings of Type Pi(2)(E)”, Mathematics, 8:1 (2020), 54
V. E. Berezovskii, L. E. Kovalev, J. Mikeš, “On preservation of the Riemann tensor with respect to some mappings of space with affine connection”, Russian Math. (Iz. VUZ), 62:9 (2018), 1–6