Abstract:
In this paper a theorem is proved on the existence of J-self-adjoint extensions for a nondensely defined J-Hermitian operator whose regularity field is nonempty.
Citation:
L. M. Raikh, “On the extension of a J-Hermitian operator with nondense domain of definition”, Mat. Zametki, 17:5 (1975), 737–743; Math. Notes, 17:5 (1975), 439–442
\Bibitem{Rai75}
\by L.~M.~Raikh
\paper On the extension of a~$J$-Hermitian operator with nondense domain of definition
\jour Mat. Zametki
\yr 1975
\vol 17
\issue 5
\pages 737--743
\mathnet{http://mi.mathnet.ru/mzm7593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=415402}
\zmath{https://zbmath.org/?q=an:0323.47026}
\transl
\jour Math. Notes
\yr 1975
\vol 17
\issue 5
\pages 439--442
\crossref{https://doi.org/10.1007/BF01155799}
Linking options:
https://www.mathnet.ru/eng/mzm7593
https://www.mathnet.ru/eng/mzm/v17/i5/p737
This publication is cited in the following 2 articles:
David Race, “The theory of J-selfadjoint extensions of J-symmetric operators”, Journal of Differential Equations, 57:2 (1985), 258
David Race, North-Holland Mathematics Studies, 92, Differential Equations, Proceedings of the Conference held at The University of Alabama in Birmingham, 1984, 465