Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 6, Pages 861–868 (Mi mzm7543)  

A characterization of the groups $L_3(2^n)$

A. P. Il'inykh

Sverdlovsk State Pedagogical Institute
Abstract: This note is concerned with finite groups in which a Sylow two-subgroup $S$ has an elementary Abelian subgroup $E$ of order $2^{2n}$, $n\ge2$, such that $E=A\times Z(S)$, $|A|=2^n$, and $C_S(a)=E$ for any involution $a\in A$.
It is proved that a simple group satisfying this condition is isomorphic to $L_3(2^n)$.
Received: 07.04.1975
English version:
Mathematical Notes, 1975, Volume 18, Issue 6, Pages 1101–1104
DOI: https://doi.org/10.1007/BF01099989
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: A. P. Il'inykh, “A characterization of the groups $L_3(2^n)$”, Mat. Zametki, 18:6 (1975), 861–868; Math. Notes, 18:6 (1975), 1101–1104
Citation in format AMSBIB
\Bibitem{Ili75}
\by A.~P.~Il'inykh
\paper A~characterization of the groups $L_3(2^n)$
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 6
\pages 861--868
\mathnet{http://mi.mathnet.ru/mzm7543}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=396736}
\zmath{https://zbmath.org/?q=an:0338.20020}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 6
\pages 1101--1104
\crossref{https://doi.org/10.1007/BF01099989}
Linking options:
  • https://www.mathnet.ru/eng/mzm7543
  • https://www.mathnet.ru/eng/mzm/v18/i6/p861
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024