|
This article is cited in 3 scientific papers (total in 3 papers)
On summability with a weight of a solution of the Sturm-Liouville equation
M. O. Otelbaev Institute of Mathematics and Mechanics, AS of Kazakh SSR
Abstract:
We study problems of summability with a weight of a solution of the Sturm–Liouville equation
$$
-y'+q(x)y=f,\quad x\in J=(-\infty,\infty).
$$
with bounded potential $q(x)$, satisfying the conditions
\begin{gather*}
\inf_{x\in J}q(x)\ge-\mu+1,\quad\sup_{|x-y|\le2}\frac{q(x)+\mu}{q(y)+\mu}<+\infty,
\\
\sup_{|x-y|\le2}\{|x-y|^{-\alpha}|q(x)|^{-\alpha}\exp(-r|x-y|\sqrt{q(x)+\lambda})|q(x)-q(y)|\}<+\infty,
\end{gather*}
where $\alpha\in(0,1]$, $r\in[0,1)$, $2-2a+\alpha>0$, $a\ge0$, $\mu\ge0$.
Our main result is the following: let $q(x)$ satisfy the conditions given above and let l$(x)$ be a nonnegative function such that
$$
C(|x|^C+1)\ge l(x)\ge C^{-1}(|x|^C+1)^{-1},\quad\sup_{|x-y|\le2}\frac{l(x)}{l(y)}<+\infty,
$$
then if $-y''+q(x)y=f$ и $y(x)l(x),~f(x)l(x)\in L_p(J)$ ($1\le p<\infty$), it follows that
\begin{gather*}
y''l(x),\quad q(x)l(x)y(x),
\\
(q(x)+\mu)^{1/2}y'(x)l(x)\in L_p(J).
\end{gather*}
Received: 27.03.1974
Citation:
M. O. Otelbaev, “On summability with a weight of a solution of the Sturm-Liouville equation”, Mat. Zametki, 16:6 (1974), 969–980; Math. Notes, 16:6 (1974), 1172–1179
Linking options:
https://www.mathnet.ru/eng/mzm7539 https://www.mathnet.ru/eng/mzm/v16/i6/p969
|
|