Abstract:
Let ˙x=A(t)x be a system of two linear ordinary differential equations with almost periodic coefficients. Then there exists for any positive ε an almost reducible system of equations ˙x=B(t)x with almost periodic coefficients and such that
sup−∞<t<+∞‖A(t)−B(t)‖<ε.
Citation:
V. L. Novikov, “On almost reducible systems with almost periodic coefficients”, Mat. Zametki, 16:5 (1974), 789–799; Math. Notes, 16:5 (1974), 1065–1071
\Bibitem{Nov74}
\by V.~L.~Novikov
\paper On almost reducible systems with almost periodic coefficients
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 5
\pages 789--799
\mathnet{http://mi.mathnet.ru/mzm7519}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=379993}
\zmath{https://zbmath.org/?q=an:0309.34030}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 5
\pages 1065--1071
\crossref{https://doi.org/10.1007/BF01149800}
Linking options:
https://www.mathnet.ru/eng/mzm7519
https://www.mathnet.ru/eng/mzm/v16/i5/p789
This publication is cited in the following 5 articles:
Mário Bessa, “Lyapunov exponents and entropy for divergence-free Lipschitz vector fields”, European Journal of Mathematics, 9:2 (2023)
Roberta Fabbri, Russell Johnson, Luca Zampogni, “On the Lyapunov exponent of certain SL(2,ℝ)-valued cocycles II”, Differ Equ Dyn Syst, 18:1-2 (2010), 135
R. Fabbri, R. Johnson, “Genericity of exponential dichotomy for two-dimensional differential systems”, Annali di Matematica pura ed applicata, 178:1 (2000), 175
Russell A. Johnson, “Hopf bifurcation from nonperiodic solutions of differential equations. I. Linear theory”, J Dyn Diff Equat, 1:2 (1989), 179
Russell A. Johnson, Kenneth J. Palmer, George R. Sell, “Ergodic Properties of Linear Dynamical Systems”, SIAM J. Math. Anal., 18:1 (1987), 1