Abstract:
We prove the solvability of convolution equations in some spaces of holomorphic functions of n variables. We clarify the structure of solutions of the homogeneous equation.
Citation:
V. V. Morzhakov, “Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in Cn”, Mat. Zametki, 16:3 (1974), 431–440; Math. Notes, 16:3 (1974), 846–851
\Bibitem{Mor74}
\by V.~V.~Morzhakov
\paper Convolution equations in spaces of functions holomorphic in convex domains and on convex compacta in $C^n$
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 3
\pages 431--440
\mathnet{http://mi.mathnet.ru/mzm7478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=388090}
\zmath{https://zbmath.org/?q=an:0313.45009}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 3
\pages 846--851
\crossref{https://doi.org/10.1007/BF01148133}
Linking options:
https://www.mathnet.ru/eng/mzm7478
https://www.mathnet.ru/eng/mzm/v16/i3/p431
This publication is cited in the following 7 articles:
S. G. Merzlyakov, “Perturbations of linear operators in spaces of holomorphic functions”, Sb. Math., 186:3 (1995), 409–434
C. A. Berenstein, D. C. Struppa, Encyclopaedia of Mathematical Sciences, 54, Several Complex Variables V, 1993, 1
A. S. Krivosheev, V. V. Napalkov, “Complex analysis and convolution operators”, Russian Math. Surveys, 47:6 (1992), 1–56
Ragnar Sigurdsson, “Convolution equations in domains of Cn”, Ark. Mat., 29:1-2 (1991), 285
A. S. Krivosheev, “A criterion for the solvability of nonhomogeneous convolution equations in convex domains of the space $\mathbf C^n$”, Math. USSR-Izv., 36:3 (1991), 497–517
S. N. Melikhov, “On expansion of analytic functions in exponential series”, Math. USSR-Izv., 33:2 (1989), 317–329
V. V. Morzhakov, “On epimorphicity of a convolution operator in convex domains in $\mathbf C^l$”, Math. USSR-Sb., 60:2 (1988), 347–364