|
This article is cited in 1 scientific paper (total in 1 paper)
Noneffectiveness of a class of regular matrices
G. A. Mikhalin Kiev Pedagogic Institute
Abstract:
We show that if a sequence $\{\varepsilon_n\}$ is such that $\varepsilon_1>\varepsilon_2\ge\varepsilon_3\ge\dots$, $\sum_{n=1}^\infty\varepsilon_n=1$, then for any bounded sequence $\{S_n\}$ the equation $\lim\limits_{n\to\infty}\sum_{k=1}^n\varepsilon_{n+1-k}S_k=S$ implies the equation $\lim\limits_{n\to\infty}S_n=S$. This theorem generalizes a theorem of N. A. Davydov [2].
Received: 26.06.1973
Citation:
G. A. Mikhalin, “Noneffectiveness of a class of regular matrices”, Mat. Zametki, 16:3 (1974), 361–364; Math. Notes, 16:3 (1974), 803–805
Linking options:
https://www.mathnet.ru/eng/mzm7468 https://www.mathnet.ru/eng/mzm/v16/i3/p361
|
|