|
This article is cited in 1 scientific paper (total in 1 paper)
Best quadrature formula on the class $W_*^rL_2$
N. E. Lushpai Dnepropetrovsk State University
Abstract:
For the classes of periodic functions with $r$-th derivative integrable in the mean,we obtain a best quadrature formula of the form \begin{gather*}
\int_0^1f(x)\,dx=\sum_{k=0}^{m-1}\sum_{l=0}^{\rho}p_{k,l}f^{(l)}(x_k)+R(f),\quad0\le\rho\le r-1,
\\
0\le x_0<x_1<\dots<x_m-1\le1,
\end{gather*}
where $\rho=r-2$ and $r-3$, $r=3,5,7,\dots$, and we determine an exact bound for the error of this formula.
Received: 31.07.1972
Citation:
N. E. Lushpai, “Best quadrature formula on the class $W_*^rL_2$”, Mat. Zametki, 16:2 (1974), 193–204; Math. Notes, 16:2 (1974), 701–708
Linking options:
https://www.mathnet.ru/eng/mzm7450 https://www.mathnet.ru/eng/mzm/v16/i2/p193
|
Statistics & downloads: |
Abstract page: | 145 | Full-text PDF : | 65 | First page: | 1 |
|