Abstract:
Let PΓL(n,q) be a complete projective group of semilinear transformations of the projective space P(n−−1,q) of projective degree n−−l over a finite field of q elements; we consider the group in its natural 2-transitive representation as a subgroup of the symmetric group S(P∗(n—1,q)) on the set P∗(n−1,q)=P(n−1,q)∖{¯0}. In the present note we show that for arbitrary n satisfying the inequality n>4qn−1qn−1−1 [in particular, for n>4(q+1)] and for an arbitrary substitution g∈S(P∗(n−1,q))∖PΓL(n,q) the group ⟨PΓL(n,q),g⟩ contains the alternating group A(P∗(n−1,q)).
For q=2,3 this result is extended to all n⩾.
Citation:
B. A. Pogorelov, “Maximal subgroups of symmetric groups defined on projective spaces over finite fields”, Mat. Zametki, 16:1 (1974), 91–100; Math. Notes, 16:1 (1974), 640–645
\Bibitem{Pog74}
\by B.~A.~Pogorelov
\paper Maximal subgroups of symmetric groups defined on projective spaces over finite fields
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 1
\pages 91--100
\mathnet{http://mi.mathnet.ru/mzm7439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=357562}
\zmath{https://zbmath.org/?q=an:0308.20005}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 1
\pages 640--645
\crossref{https://doi.org/10.1007/BF01098818}
Linking options:
https://www.mathnet.ru/eng/mzm7439
https://www.mathnet.ru/eng/mzm/v16/i1/p91
This publication is cited in the following 2 articles:
A. V. Ivanov, “Nezamknutost klassa giper-bent-funktsii otnositelno deistviya polnoi lineinoi gruppy”, Matem. vopr. kriptogr., 3:2 (2012), 5–26
S. P. Gorshkov, A. V. Tarasov, “Maximal groups of invariant transformations of multiaffine, bijunctive, weakly positive, and weakly negative Boolean functions”, Discrete Math. Appl., 19:3 (2009), 283–291