Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 15, Issue 6, Pages 885–890 (Mi mzm7418)  

This article is cited in 4 scientific papers (total in 4 papers)

Some properties of a regular solution of the Helmholtz equation in a two-dimensional domain

V. A. Il'in

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Full-text PDF (346 kB) Citations (4)
Abstract: In this paper we prove that if the function uλ is a regular solution of the equation Δ2u+λu=0 in an arbitrary two-dimensional domain g and if at an arbitrary point M of the domain g we introduce polar coordinates r and φ, then for an arbitrary value of the polar radius r, less than the distance of the point M from the boundary of the domain g, the following formula is valid:
02πuλ(r,φ)einφdφ=2π(λ)nJn(rλ)(x+iy)nuλ(M).

Simultaneously, we show that the derivative nuλ(0,φ)rn is an n-th order trigonometric polynomial.
Received: 20.12.1973
English version:
Mathematical Notes, 1974, Volume 15, Issue 6, Pages 529–532
DOI: https://doi.org/10.1007/BF01152829
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. A. Il'in, “Some properties of a regular solution of the Helmholtz equation in a two-dimensional domain”, Mat. Zametki, 15:6 (1974), 885–890; Math. Notes, 15:6 (1974), 529–532
Citation in format AMSBIB
\Bibitem{Ili74}
\by V.~A.~Il'in
\paper Some properties of a~regular solution of the Helmholtz equation in a~two-dimensional domain
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 6
\pages 885--890
\mathnet{http://mi.mathnet.ru/mzm7418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=427813}
\zmath{https://zbmath.org/?q=an:0306.35034|0302.35033}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 6
\pages 529--532
\crossref{https://doi.org/10.1007/BF01152829}
Linking options:
  • https://www.mathnet.ru/eng/mzm7418
  • https://www.mathnet.ru/eng/mzm/v15/i6/p885
  • This publication is cited in the following 4 articles:
    1. M. V. Polovinkina, “Formula srednego znacheniya dlya giperbolicheskogo uravneniya s faktorizuemym operatorom”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, M., 2019, 126–131  mathnet  crossref
    2. I. P. Polovinkin, “Mean value theorems for linear partial differential equations”, J. Math. Sci. (N. Y.), 197:3 (2014), 399–403  mathnet  crossref  elib
    3. Meshkov V.Z., Polovinkin I.P., “O poluchenii novykh formul srednego znacheniya dlya lineinykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Differentsialnye uravneniya, 47:12 (2011), 1724–1724  elib
    4. I. P. Polovinkin, “K svoistvam reshenii lineinykh uravnenii v chastnykh proizvodnykh”, Vestnik ChelGU, 2010, no. 12, 59–66  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :110
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025