Abstract:
In this paper we prove that if the function uλ is a regular solution of the equation Δ2u+λu=0 in an arbitrary two-dimensional domain g and if at an arbitrary point M of the domain g we introduce polar coordinates r and φ, then for an arbitrary value of the polar radius r, less than the distance of the point M from the boundary of the domain g, the following formula is valid:
∫2π0uλ(r,φ)einφdφ=2π(√λ)−nJn(r√λ)(∂∂x+i∂∂y)nuλ(M).
Simultaneously, we show that the derivative ∂nuλ(0,φ)∂rn is an n-th order trigonometric polynomial.
Citation:
V. A. Il'in, “Some properties of a regular solution of the Helmholtz equation in a two-dimensional domain”, Mat. Zametki, 15:6 (1974), 885–890; Math. Notes, 15:6 (1974), 529–532
\Bibitem{Ili74}
\by V.~A.~Il'in
\paper Some properties of a~regular solution of the Helmholtz equation in a~two-dimensional domain
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 6
\pages 885--890
\mathnet{http://mi.mathnet.ru/mzm7418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=427813}
\zmath{https://zbmath.org/?q=an:0306.35034|0302.35033}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 6
\pages 529--532
\crossref{https://doi.org/10.1007/BF01152829}
Linking options:
https://www.mathnet.ru/eng/mzm7418
https://www.mathnet.ru/eng/mzm/v15/i6/p885
This publication is cited in the following 4 articles:
M. V. Polovinkina, “Formula srednego znacheniya dlya giperbolicheskogo uravneniya s faktorizuemym operatorom”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, M., 2019, 126–131
I. P. Polovinkin, “Mean value theorems for linear partial differential equations”, J. Math. Sci. (N. Y.), 197:3 (2014), 399–403