Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 70, Issue 2, Pages 270–288
DOI: https://doi.org/10.4213/mzm740
(Mi mzm740)
 

This article is cited in 2 scientific papers (total in 2 papers)

Bezout Rings, Polynomials, and Distributivity

A. A. Tuganbaev

Moscow Power Engineering Institute (Technical University)
Full-text PDF (260 kB) Citations (2)
References:
Abstract: Let $A$ be a ring, $\varphi$ be an injective endomorphism of $A$, and let $A_r[x,\varphi]\equiv R$ be the right skew polynomial ring. If all right annihilator ideals of $A$ are ideals, then $R$ is a right Bezout ring $\iff$ $A$ is a right Rickartian right Bezout ring, $\varphi(e)=e$ for every central idempotent $e\in A$, and the element $\varphi(a)$ is invertible in $A$ for every regular $a\in A$. If $A$ is strongly regular and $n\ge2$, then $R/x^nR$ is a right Bezout ring $R/x^nR$ is a right distributive ring $\iff$ $R/x^nR$ is a right invariant ring $\iff$ $\varphi(e)=e$ for every central idempotent $e\in A$. The ring $R/x^2R$ is right distributive $\iff$ $R/x^nR$ is right distributive for every positive integer $n$ $\iff$ $A$ is right or left Rickartian and right distributive,$\varphi(e)=e$ for every central idempotent $e\in A$ and the $\varphi(a)$ is invertible in $A$ for every regular $a\in A$. If $A$ is a ring which is a finitely generated module over its center, then $A[x]$ is a right Bezout ring $\iff$ $A[x]/x^2A[x]$ is a right Bezout ring $\iff$ $A$ is a regular ring.
Received: 20.06.2000
English version:
Mathematical Notes, 2001, Volume 70, Issue 2, Pages 242–257
DOI: https://doi.org/10.1023/A:1010263010640
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “Bezout Rings, Polynomials, and Distributivity”, Mat. Zametki, 70:2 (2001), 270–288; Math. Notes, 70:2 (2001), 242–257
Citation in format AMSBIB
\Bibitem{Tug01}
\by A.~A.~Tuganbaev
\paper Bezout Rings, Polynomials, and Distributivity
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 2
\pages 270--288
\mathnet{http://mi.mathnet.ru/mzm740}
\crossref{https://doi.org/10.4213/mzm740}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1882416}
\zmath{https://zbmath.org/?q=an:1035.16022}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 2
\pages 242--257
\crossref{https://doi.org/10.1023/A:1010263010640}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171684100029}
Linking options:
  • https://www.mathnet.ru/eng/mzm740
  • https://doi.org/10.4213/mzm740
  • https://www.mathnet.ru/eng/mzm/v70/i2/p270
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024