Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 15, Issue 3, Pages 501–508 (Mi mzm7371)  

Number of equivalence classes of weakly equivalent lattices

I. A. Levina

Leningrad Technological Institute
Abstract: Two complete lattices, $M$ and $N$, lying in an algebra over the field of rational numbers, are said to be weakly left equivalent if $N=KM$ and $M=\overline KN$, where $K$ is a two-sided invertible lattice and $\overline K$ is the inverse for $K$. In this paper we prove that the number of equivalence classes of lattices contained in a weak equivalence class is finite.
Received: 25.09.1972
English version:
Mathematical Notes, 1974, Volume 15, Issue 3, Pages 292–295
DOI: https://doi.org/10.1007/BF01438386
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: I. A. Levina, “Number of equivalence classes of weakly equivalent lattices”, Mat. Zametki, 15:3 (1974), 501–508; Math. Notes, 15:3 (1974), 292–295
Citation in format AMSBIB
\Bibitem{Lev74}
\by I.~A.~Levina
\paper Number of equivalence classes of weakly equivalent lattices
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 3
\pages 501--508
\mathnet{http://mi.mathnet.ru/mzm7371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=376734}
\zmath{https://zbmath.org/?q=an:0291.16007|0288.16005}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 3
\pages 292--295
\crossref{https://doi.org/10.1007/BF01438386}
Linking options:
  • https://www.mathnet.ru/eng/mzm7371
  • https://www.mathnet.ru/eng/mzm/v15/i3/p501
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024