Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 15, Issue 3, Pages 405–414 (Mi mzm7361)  

This article is cited in 5 scientific papers (total in 5 papers)

Order function for almost all numbers

Yu. V. Nesterenko

M. V. Lomonosov Moscow State University
Full-text PDF (623 kB) Citations (5)
Abstract: For almost all pointsxgrexist $\xi\in R^m$ ($m>2$) the inequality
$$ \sup\ln\frac1{|P(\xi)|}\ll(\ln u)^{m+2}, $$
is valid, where the upper bound is taken over all nonzero polynomials $P$ for which $\exp(\operatorname{deg}P)L(P)<u$ where $L(P)$ is the sum of the moduli of the coefficients of $P$.
When $m=1$ the exponent of the right side is equal to 2.
Received: 19.07.1973
English version:
Mathematical Notes, 1974, Volume 15, Issue 3, Pages 234–240
DOI: https://doi.org/10.1007/BF01438376
Bibliographic databases:
Language: Russian
Citation: Yu. V. Nesterenko, “Order function for almost all numbers”, Mat. Zametki, 15:3 (1974), 405–414; Math. Notes, 15:3 (1974), 234–240
Citation in format AMSBIB
\Bibitem{Nes74}
\by Yu.~V.~Nesterenko
\paper Order function for almost all numbers
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 3
\pages 405--414
\mathnet{http://mi.mathnet.ru/mzm7361}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=347747}
\zmath{https://zbmath.org/?q=an:0291.10028|0287.10022}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 3
\pages 234--240
\crossref{https://doi.org/10.1007/BF01438376}
Linking options:
  • https://www.mathnet.ru/eng/mzm7361
  • https://www.mathnet.ru/eng/mzm/v15/i3/p405
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:516
    Full-text PDF :115
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024