|
This article is cited in 4 scientific papers (total in 4 papers)
Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$
V. I. Ruban Dnepropetrovsk State University
Abstract:
For even values of $n$ we find the exact values of the diameters $d_n(W^{(r)}H_\omega)$ of the classes of $2\pi$-periodic functions $W^{(r)}H_\omega$ ($\omega(t)$ is an arbitrary convex upwards modulus of continuity) in the space $C_2\pi$. We find that $d_{2n}(W^{(r)}H_\omega)$ ($n=1,2,\dots$; $r=0,1,2,\dots$).
Received: 29.05.1973
Citation:
V. I. Ruban, “Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$”, Mat. Zametki, 15:3 (1974), 387–392; Math. Notes, 15:3 (1974), 222–225
Linking options:
https://www.mathnet.ru/eng/mzm7359 https://www.mathnet.ru/eng/mzm/v15/i3/p387
|
Statistics & downloads: |
Abstract page: | 258 | Full-text PDF : | 90 | First page: | 1 |
|