Abstract:
For even values of n we find the exact values of the diameters dn(W(r)Hω) of the classes of 2π-periodic functions W(r)Hω (ω(t) is an arbitrary convex upwards modulus of continuity) in the space C2π. We find that d2n(W(r)Hω) (n=1,2,…; r=0,1,2,…).
\Bibitem{Rub74}
\by V.~I.~Ruban
\paper Even diameters of the classes $W^{(r)}H_\omega$ in the space $C_2\pi$
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 3
\pages 387--392
\mathnet{http://mi.mathnet.ru/mzm7359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=352814}
\zmath{https://zbmath.org/?q=an:0297.41023}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 3
\pages 222--225
\crossref{https://doi.org/10.1007/BF01438374}
Linking options:
https://www.mathnet.ru/eng/mzm7359
https://www.mathnet.ru/eng/mzm/v15/i3/p387
This publication is cited in the following 4 articles:
S. K. Bagdasarov, “Maximization of functionals in Hω[a,b]”, Sb. Math., 189:2 (1998), 159–226
V. T. Shevaldin, “Lower estimates of the widths of the classes of functions defined by a modulus of continuity”, Russian Acad. Sci. Izv. Math., 45:2 (1995), 399–415
N. P. Korneichuk, “Widths in Lp of classes of continuous and of differentiable functions, and optimal methods of coding and recovering functions and their derivatives”, Math. USSR-Izv., 18:2 (1982), 227–247
N. P. Korneichuk, “On extremal problems in the theory of best approximation”, Russian Math. Surveys, 29:3 (1974), 7–43