Abstract:
Let L be the minimal operator in L2(R1) generated by the expression ly=−−y″+q(x)y, Imq(x)≡0, let Δk (k=±1,±2,…) be a sequence of disjoint intervals going out to ±∞ for k→+∞, and let δk be the length Δk. If (ly,y)⩾−γk‖y‖2 on all smooth y(x) with support in δk, whereby γk>0,
∞∑k=1(γk+δ−2k)−1=−1∑k=−∞(γk+δ−2k)−1=∞,
then the operator L is self-adjoint. This theorem generalizes criteria for the self-adjointness of L obtained earlier by R. S. Ismagilov, A. Ya. Povzner, and D. B. Sears.
Citation:
Yu. B. Orochko, “Sufficient conditions for the self-adjointness of the Sturm–Liouville operator”, Mat. Zametki, 15:2 (1974), 271–280; Math. Notes, 15:2 (1974), 155–160
\Bibitem{Oro74}
\by Yu.~B.~Orochko
\paper Sufficient conditions for the self-adjointness of the Sturm--Liouville operator
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 2
\pages 271--280
\mathnet{http://mi.mathnet.ru/mzm7346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=375002}
\zmath{https://zbmath.org/?q=an:0352.34023}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 2
\pages 155--160
\crossref{https://doi.org/10.1007/BF02102398}
Linking options:
https://www.mathnet.ru/eng/mzm7346
https://www.mathnet.ru/eng/mzm/v15/i2/p271
This publication is cited in the following 7 articles:
K. A. Mirzoev, “Sturm–Liouville operators”, Trans. Moscow Math. Soc., 75 (2014), 281–299
Yu. B. Orochko, “The hyperbolic equation method in the theory of operators of Schrödinger type with a locally integrable potential”, Russian Math. Surveys, 43:2 (1988), 51–102
Yu. B. Orochko, “Finite local propagation rate of a hyperbolic equation in the problem of selfadjointness of powers of a second order elliptic differential operator”, Math. USSR-Izv., 22:2 (1984), 277–290
Yu. B. Orochko, “Finite propagation velocity and essential self-adjointness of certain differential operators”, Funct. Anal. Appl., 13:3 (1979), 235–237
V. I. Gorbachuk, M. L. Gorbachuk, “Some questions of the spectral theory of differential equations of elliptic type in the space of vector-functions”, Ukr Math J, 28:3 (1977), 244
Yu. B. Orochko, “A sufficient condition for essential selfadjointness of polynomials in the Schrödinger operator”, Math. USSR-Sb., 28:2 (1976), 169–185
A. G. Brusentsev, F. S. Rofe-Beketov, “Selfadjointness conditions for strongly elliptic systems of arbitrary order”, Math. USSR-Sb., 24:1 (1974), 103–126