Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 15, Issue 2, Pages 271–280 (Mi mzm7346)  

This article is cited in 7 scientific papers (total in 7 papers)

Sufficient conditions for the self-adjointness of the Sturm–Liouville operator

Yu. B. Orochko
Abstract: Let L be the minimal operator in L2(R1) generated by the expression ly=y+q(x)y, Imq(x)0, let Δk (k=±1,±2,) be a sequence of disjoint intervals going out to ± for k+, and let δk be the length Δk. If (ly,y)γky2 on all smooth y(x) with support in δk, whereby γk>0,
k=1(γk+δ2k)1=1k=(γk+δ2k)1=,
then the operator L is self-adjoint. This theorem generalizes criteria for the self-adjointness of L obtained earlier by R. S. Ismagilov, A. Ya. Povzner, and D. B. Sears.
English version:
Mathematical Notes, 1974, Volume 15, Issue 2, Pages 155–160
DOI: https://doi.org/10.1007/BF02102398
Bibliographic databases:
Language: Russian
Citation: Yu. B. Orochko, “Sufficient conditions for the self-adjointness of the Sturm–Liouville operator”, Mat. Zametki, 15:2 (1974), 271–280; Math. Notes, 15:2 (1974), 155–160
Citation in format AMSBIB
\Bibitem{Oro74}
\by Yu.~B.~Orochko
\paper Sufficient conditions for the self-adjointness of the Sturm--Liouville operator
\jour Mat. Zametki
\yr 1974
\vol 15
\issue 2
\pages 271--280
\mathnet{http://mi.mathnet.ru/mzm7346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=375002}
\zmath{https://zbmath.org/?q=an:0352.34023}
\transl
\jour Math. Notes
\yr 1974
\vol 15
\issue 2
\pages 155--160
\crossref{https://doi.org/10.1007/BF02102398}
Linking options:
  • https://www.mathnet.ru/eng/mzm7346
  • https://www.mathnet.ru/eng/mzm/v15/i2/p271
  • This publication is cited in the following 7 articles:
    1. K. A. Mirzoev, “Sturm–Liouville operators”, Trans. Moscow Math. Soc., 75 (2014), 281–299  mathnet  crossref  elib
    2. Yu. B. Orochko, “The hyperbolic equation method in the theory of operators of Schrödinger type with a locally integrable potential”, Russian Math. Surveys, 43:2 (1988), 51–102  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. Yu. B. Orochko, “Finite local propagation rate of a hyperbolic equation in the problem of selfadjointness of powers of a second order elliptic differential operator”, Math. USSR-Izv., 22:2 (1984), 277–290  mathnet  crossref  mathscinet  zmath
    4. Yu. B. Orochko, “Finite propagation velocity and essential self-adjointness of certain differential operators”, Funct. Anal. Appl., 13:3 (1979), 235–237  mathnet  crossref  mathscinet  zmath
    5. V. I. Gorbachuk, M. L. Gorbachuk, “Some questions of the spectral theory of differential equations of elliptic type in the space of vector-functions”, Ukr Math J, 28:3 (1977), 244  crossref
    6. Yu. B. Orochko, “A sufficient condition for essential selfadjointness of polynomials in the Schrödinger operator”, Math. USSR-Sb., 28:2 (1976), 169–185  mathnet  crossref  mathscinet  zmath  isi
    7. A. G. Brusentsev, F. S. Rofe-Beketov, “Selfadjointness conditions for strongly elliptic systems of arbitrary order”, Math. USSR-Sb., 24:1 (1974), 103–126  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025