|
This article is cited in 3 scientific papers (total in 3 papers)
The stability of the completeness and minimality in $L^2$ of a system of exponential functions
A. M. Sedletskii Moscow Power Engineering Institute
Abstract:
Let the sequences $\{\lambda_n\}$ and $\{\alpha_n\}$ of complex numbers satisfy the conditions: 1) $\sup|\operatorname{Im}\lambda_n|=h<\infty$; 2) the number of points $\lambda_n$ in the rectangle $|t-\operatorname{Re}z|\le1$, $|\operatorname{Im}z|\le h$ is uniformly bounded with respect to $t\in(-\infty,\infty)$; 3) $\{\alpha_n\}\in l^p$ for some $p<\infty$. Then the systems $\{\exp(i\lambda_nx)\}$ and $\{\exp(ix(\lambda_n+\alpha_n))\}$ are simultaneously complete or noncomplete (minimal or nonminimal) in $L^2(-a,a)$ ($a<\infty$).
Received: 05.06.1973
Citation:
A. M. Sedletskii, “The stability of the completeness and minimality in $L^2$ of a system of exponential functions”, Mat. Zametki, 15:2 (1974), 213–219; Math. Notes, 15:2 (1974), 121–124
Linking options:
https://www.mathnet.ru/eng/mzm7338 https://www.mathnet.ru/eng/mzm/v15/i2/p213
|
Statistics & downloads: |
Abstract page: | 240 | Full-text PDF : | 97 | First page: | 1 |
|