|
This article is cited in 2 scientific papers (total in 2 papers)
Interpolation in certain Hilbert spaces of analytic functions
S. V. Shvedenko Moscow Electronic Engineering Institute
Abstract:
In this article we study, for a Hilbert space $\mathfrak H$ of analytic functions in the open unit disk, the dependence of the structure of the space of sequences $\mathfrak H(Z)=\{\{f(z_k)\}_{k=1}^\infty:f\in\mathfrak H\}$ on the choice of the sequence $Z=\{z_k\}_{k=1}^\infty$ of distinct points of the unit disk.
Received: 17.11.1972
Citation:
S. V. Shvedenko, “Interpolation in certain Hilbert spaces of analytic functions”, Mat. Zametki, 15:1 (1974), 101–112; Math. Notes, 15:1 (1974), 56–61
Linking options:
https://www.mathnet.ru/eng/mzm7324 https://www.mathnet.ru/eng/mzm/v15/i1/p101
|
Statistics & downloads: |
Abstract page: | 196 | Full-text PDF : | 92 | First page: | 1 |
|