Abstract:
A theorem on topological equivalence is proved for local singularities of particular type for dynamical systems with shock interactions. The proof is based on a previously established result concerning the description of motion in the neighborhood of the specified local singularity in terms of smooth differential equations.
Citation:
S. P. Gorbikov, “Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions”, Mat. Zametki, 70:2 (2001), 181–194; Math. Notes, 70:2 (2001), 163–174
\Bibitem{Gor01}
\by S.~P.~Gorbikov
\paper Topological Equivalence of Local Singularities of Particular Type for Dynamical Systems with Shock Interactions
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 2
\pages 181--194
\mathnet{http://mi.mathnet.ru/mzm732}
\crossref{https://doi.org/10.4213/mzm732}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1882408}
\zmath{https://zbmath.org/?q=an:1034.34031}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 2
\pages 163--174
\crossref{https://doi.org/10.1023/A:1010246607005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171684100021}
Linking options:
https://www.mathnet.ru/eng/mzm732
https://doi.org/10.4213/mzm732
https://www.mathnet.ru/eng/mzm/v70/i2/p181
This publication is cited in the following 2 articles:
S. P. Gorbikov, “Auxiliary sliding motions of vibro-impact systems”, Autom. Remote Control, 81:8 (2020), 1413–1430
Gorbikov S.P., Men'shenina A.V., “Bifurcation resulting in chaotic motions in dynamical systems with shock interactions”, Differential Equations, 41:8 (2005), 1097–1104