Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 6, Pages 913–924 (Mi mzm7311)  

Best mean-square approximation of functions of $m$ variables

V. Yu. Popov
Abstract: Let $E_\sigma(f;l_q)_{L_2(R_m)}$ be the best mean-square approximation of a function $f(x)\in L_2(R_m)$ ($m=1,2,\dots$) by integral functions of the exponential spherical type (in the sense of the $l_q$, $0<q\le\infty$) with $\sigma>0$, $\omega(f;\pi/\sigma;l_p)_{L_2(R_m)}$ is the spherical (in the sense of the metric $l_p$, $0<p\le\infty$) continuity module of the function $f(x)\in L_2(R_m)$.
For the quantity $C_\sigma(m;q;p)=\sup\limits_{f\in L_2}\{E_\sigma(f;l_q):\omega(f;\pi/\sigma;l_p)\}$ two-sided estimates are obtained which are uniform in the parameters $m$, $q$, and $p$. Similar results are also obtained in the case of $q=p=2$ for classes of functions $W_2^\rho(R_m)$ ($\rho=1,2,\dots$).
Received: 29.01.1973
English version:
Mathematical Notes, 1973, Volume 14, Issue 6, Pages 1085–1092
DOI: https://doi.org/10.1007/BF01099597
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. Yu. Popov, “Best mean-square approximation of functions of $m$ variables”, Mat. Zametki, 14:6 (1973), 913–924; Math. Notes, 14:6 (1973), 1085–1092
Citation in format AMSBIB
\Bibitem{Pop73}
\by V.~Yu.~Popov
\paper Best mean-square approximation of functions of $m$ variables
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 6
\pages 913--924
\mathnet{http://mi.mathnet.ru/mzm7311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=336184}
\zmath{https://zbmath.org/?q=an:0299.41012}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 6
\pages 1085--1092
\crossref{https://doi.org/10.1007/BF01099597}
Linking options:
  • https://www.mathnet.ru/eng/mzm7311
  • https://www.mathnet.ru/eng/mzm/v14/i6/p913
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024