Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 6, Pages 781–788 (Mi mzm7296)  

A class of lacunary trigonometric series

E. V. Orlov

Saratov State University
Abstract: It is shown that there exists a sequence of natural numbers $\{n_k\}$ which does not belong to the class $B_2$ and which cannot be decomposed into a finite number of lacunary sequences such that: a) if the series $\sum_{k=-\infty}^\infty c_ke^{in}k^x$ converges on a set of positive measure, then the series consisting of the squares of the coefficients converges; b) for each set $E$ of positive measure we can remove from the system $\{e^{in}k^x\}_{k=-\infty}^\infty$ a finite number of terms with the result that what is left is a Bessel system in $L^2(E)$; and c) if the series $\sum_{k=-\infty}^\infty c_ke^{in}k^x$ converges to zero on a set of positive measure, then each coefficient is zero.
Received: 25.01.1973
English version:
Mathematical Notes, 1973, Volume 14, Issue 6, Pages 1006–1010
DOI: https://doi.org/10.1007/BF01099582
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: E. V. Orlov, “A class of lacunary trigonometric series”, Mat. Zametki, 14:6 (1973), 781–788; Math. Notes, 14:6 (1973), 1006–1010
Citation in format AMSBIB
\Bibitem{Orl73}
\by E.~V.~Orlov
\paper A~class of lacunary trigonometric series
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 6
\pages 781--788
\mathnet{http://mi.mathnet.ru/mzm7296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=338668}
\zmath{https://zbmath.org/?q=an:0295.42009}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 6
\pages 1006--1010
\crossref{https://doi.org/10.1007/BF01099582}
Linking options:
  • https://www.mathnet.ru/eng/mzm7296
  • https://www.mathnet.ru/eng/mzm/v14/i6/p781
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024