Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 4, Pages 517–522 (Mi mzm7283)  

This article is cited in 2 scientific papers (total in 2 papers)

The rigidity of “corrugated” surfaces of revolution

I. Kh. Sabitov

M. V. Lomonosov Moscow State University
Full-text PDF (385 kB) Citations (2)
Abstract: The rigidity is proven of certain surfaces of revolution with infinite alternation of portions of positive and negative curvature.
English version:
Mathematical Notes, 1973, Volume 14, Issue 4, Pages 854–857
DOI: https://doi.org/10.1007/BF01108812
Bibliographic databases:
UDC: 513.7
Language: Russian
Citation: I. Kh. Sabitov, “The rigidity of “corrugated” surfaces of revolution”, Mat. Zametki, 14:4 (1973), 517–522; Math. Notes, 14:4 (1973), 854–857
Citation in format AMSBIB
\Bibitem{Sab73}
\by I.~Kh.~Sabitov
\paper The rigidity of ``corrugated'' surfaces of revolution
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 4
\pages 517--522
\mathnet{http://mi.mathnet.ru/mzm7283}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=355911}
\zmath{https://zbmath.org/?q=an:0283.53004}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 4
\pages 854--857
\crossref{https://doi.org/10.1007/BF01108812}
Linking options:
  • https://www.mathnet.ru/eng/mzm7283
  • https://www.mathnet.ru/eng/mzm/v14/i4/p517
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024