|
On a hypothesis on Poincaré series
G. I. Gusev Saratov State University
Abstract:
Let $F(x_1,\dots,x_m)$ ($m\ge1$) be a polynomial with integral $p$-adic coefficients, and let $N_\alpha$, be the number of solutions of the congruence $F(x_1,\dots,x_m)\equiv0\pmod{p^\alpha}$ proof is given that the Poincaré series $\Phi(t)=\sum_{\alpha=0}^\infty N_\alpha t^\alpha$ is rational for a class of isometrically-equivalent polynomials of $m$ variables ($m\ge2$) containing a form of degree $n\ge2$ of two variables.
Received: 04.07.1972
Citation:
G. I. Gusev, “On a hypothesis on Poincaré series”, Mat. Zametki, 14:3 (1973), 453–463; Math. Notes, 14:3 (1973), 817–822
Linking options:
https://www.mathnet.ru/eng/mzm7275 https://www.mathnet.ru/eng/mzm/v14/i3/p453
|
|