Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 3, Pages 399–406 (Mi mzm7270)  

This article is cited in 1 scientific paper (total in 1 paper)

On the global dimension of an algebra

V. E. Govorov

Moscow Institute of Electronic Engineering
Full-text PDF (551 kB) Citations (1)
Abstract: Let algebra $R=\Lambda/P$, where $\operatorname{w. gl. dim}R:=\{\min n|_{\forall R}\text{-modules }X,Y$, $\operatorname{Tor}_{n+1}^R(X,Y)=0\}$. In order that $\operatorname{w. gl. dim}R\le2n$ ($\operatorname{w. gl. dim}R\le2n+1$), it is necessary and sufficient that, for any two ideals of algebra $\Lambda$, a left ideal $A$ and a right ideal $B$, containing ideal $P$, the following equation holds:
$$ AP^n\cap P^nB=AP^nB+P^{n+1} \quad (AP^nB\cap P^{n+1}=AP^{n+1}+P^{n+1}B). $$
Received: 10.04.1972
English version:
Mathematical Notes, 1973, Volume 14, Issue 3, Pages 789–792
DOI: https://doi.org/10.1007/BF01147457
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: V. E. Govorov, “On the global dimension of an algebra”, Mat. Zametki, 14:3 (1973), 399–406; Math. Notes, 14:3 (1973), 789–792
Citation in format AMSBIB
\Bibitem{Gov73}
\by V.~E.~Govorov
\paper On the global dimension of an algebra
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 3
\pages 399--406
\mathnet{http://mi.mathnet.ru/mzm7270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=330225}
\zmath{https://zbmath.org/?q=an:0281.16017}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 3
\pages 789--792
\crossref{https://doi.org/10.1007/BF01147457}
Linking options:
  • https://www.mathnet.ru/eng/mzm7270
  • https://www.mathnet.ru/eng/mzm/v14/i3/p399
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024