Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 2, Pages 209–216 (Mi mzm7250)  

This article is cited in 9 scientific papers (total in 9 papers)

On the dimension of graded algebras

V. E. Govorov

Moscow Institute of Electronic Engineering
Full-text PDF (589 kB) Citations (9)
Abstract: To each graded algebra R with a finite number of generators we associate the series T(R,z)=dnzn, where dn is the dimension of the homogeneous component of R. It is proved that if the dimensions dn have polynomial growth, then the Krull dimension of R cannot exceed the order of the pole of the series T(R,z) for z=1 by more than 1.
Received: 03.01.1972
English version:
Mathematical Notes, 1973, Volume 14, Issue 2, Pages 678–682
DOI: https://doi.org/10.1007/BF01147113
Bibliographic databases:
UDC: 512
Language: Russian
Citation: V. E. Govorov, “On the dimension of graded algebras”, Mat. Zametki, 14:2 (1973), 209–216; Math. Notes, 14:2 (1973), 678–682
Citation in format AMSBIB
\Bibitem{Gov73}
\by V.~E.~Govorov
\paper On the dimension of graded algebras
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 2
\pages 209--216
\mathnet{http://mi.mathnet.ru/mzm7250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=332876}
\zmath{https://zbmath.org/?q=an:0277.16016}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 2
\pages 678--682
\crossref{https://doi.org/10.1007/BF01147113}
Linking options:
  • https://www.mathnet.ru/eng/mzm7250
  • https://www.mathnet.ru/eng/mzm/v14/i2/p209
  • This publication is cited in the following 9 articles:
    1. D. I. Piontkovskii, “Koszul Algebras and Their Ideals”, Funct. Anal. Appl., 39:2 (2005), 120–130  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. D. I. Piontkovskii, “On the Hilbert Series of Koszul Algebras”, Funct. Anal. Appl., 35:2 (2001), 133–137  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Li-Chuan Sun, “Growth of Betti numbers of modules over local rings of small embedding codimension or small linkage number”, Journal of Pure and Applied Algebra, 96:1 (1994), 57  crossref
    4. V. A. Ufnarovskii, “On the use of graphs for computing a basis, growth and Hilbert series of associative algebras”, Math. USSR-Sb., 68:2 (1991), 417–428  mathnet  crossref  mathscinet  zmath  isi
    5. David J. Anick, Lecture Notes in Mathematics, 1318, Algebraic Topology Rational Homotopy, 1988, 1  crossref
    6. I. K. Babenko, “Problems of growth and rationality in algebra and topology”, Russian Math. Surveys, 41:2 (1986), 117–175  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. David Anick, Clas Löfwall, Lecture Notes in Mathematics, 1183, Algebra, Algebraic Topology and their Interactions, 1986, 32  crossref
    8. David J Anick, “Non-commutative graded algebras and their Hilbert series”, Journal of Algebra, 78:1 (1982), 120  crossref
    9. James B Shearer, “A graded algebra with a non-rational Hilbert series”, Journal of Algebra, 62:1 (1980), 228  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :112
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025