Abstract:
We derive several abstract formulas (of Gelfand–Levitan type) for the first regularized trace of discrete operators under various conditions convenient for verification. The proof of the main result is based on the contour integration method with some modifications from analytic perturbation theory and from the approach proposed earlier by M. Dostani. Some known trace formulas are generalized and improved. We give examples of the applications of our abstract trace formulas for obtaining special trace formulas for ordinary differential operators and for partial differential operators.
Citation:
N. G. Tomin, “Several Formulas for the First Regularized Trace of Discrete Operators”, Mat. Zametki, 70:1 (2001), 109–122; Math. Notes, 70:1 (2001), 97–109
\Bibitem{Tom01}
\by N.~G.~Tomin
\paper Several Formulas for the First Regularized Trace of Discrete Operators
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 1
\pages 109--122
\mathnet{http://mi.mathnet.ru/mzm724}
\crossref{https://doi.org/10.4213/mzm724}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1883776}
\zmath{https://zbmath.org/?q=an:1039.47029}
\elib{https://elibrary.ru/item.asp?id=5023146}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 1
\pages 97--109
\crossref{https://doi.org/10.1023/A:1010230103371}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000171684100013}
Linking options:
https://www.mathnet.ru/eng/mzm724
https://doi.org/10.4213/mzm724
https://www.mathnet.ru/eng/mzm/v70/i1/p109
This publication is cited in the following 3 articles:
N. G. Tomin, I. V. Tomina, “Ob odnoi abstraktnoi formule regulyarizovannykh sledov diskretnykh operatorov i ee primeneniyakh”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 193, VINITI RAN, M., 2021, 142–152
Intissar A., “Regularized Trace Formula of Magic Gribov Operator on Bargmann Space”, J. Math. Anal. Appl., 437:1 (2016), 59–70
Tomin N.G., “K obratnoi zadache spektralnogo analiza dlya odnogo klassa diskretnykh operatorov v gilbertovom prostranstve”, Matematika i ee prilozheniya. zhurnal ivanovskogo matematicheskogo obschestva, 2011, no. 1, 129–138