Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 17, Issue 1, Pages 91–101 (Mi mzm7227)  

This article is cited in 15 scientific papers (total in 15 papers)

Proof of uniqueness and membership in $W^1_2$ of the classical solution of a mixed problem for a self-adjoint hyperbolic equation

V. A. Il'in

V. A. Steklov Mathematical Institute, Academy of Sciences of the USSR, USSR
Abstract: In this article a uniqueness theorem for the classical solution of a mixed problem is proved under minimal assumptions on the coefficients of the differential operator for admitting the Fourier method of a hyperbolic second-order equation in an $(N+1)$-dimensional cylinder, whose cross section is a completely arbitrary bounded $N$-dimensional domain. Furthermore, it is proved that the classical solution of the indicated mixed problem, whenever it exists, belongs to the class $W^1_2$ and is the generalized solution from $W^1_2$ of the same problem.
Received: 12.09.1974
English version:
Mathematical Notes, 1975, Volume 17, Issue 1, Pages 53–58
DOI: https://doi.org/10.1007/BF01093843
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: Russian
Citation: V. A. Il'in, “Proof of uniqueness and membership in $W^1_2$ of the classical solution of a mixed problem for a self-adjoint hyperbolic equation”, Mat. Zametki, 17:1 (1975), 91–101; Math. Notes, 17:1 (1975), 53–58
Citation in format AMSBIB
\Bibitem{Ili75}
\by V.~A.~Il'in
\paper Proof of uniqueness and membership in $W^1_2$ of the classical solution of a mixed problem for a self-adjoint hyperbolic equation
\jour Mat. Zametki
\yr 1975
\vol 17
\issue 1
\pages 91--101
\mathnet{http://mi.mathnet.ru/mzm7227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=369929}
\zmath{https://zbmath.org/?q=an:0315.35055}
\transl
\jour Math. Notes
\yr 1975
\vol 17
\issue 1
\pages 53--58
\crossref{https://doi.org/10.1007/BF01093843}
Linking options:
  • https://www.mathnet.ru/eng/mzm7227
  • https://www.mathnet.ru/eng/mzm/v17/i1/p91
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :139
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024