Abstract:
In this paper we solve the problem of the determination of a polynomial of degree n with given two leading coefficients which has the least deviation from zero in the metric of L1([−1,1])L1([−1,1]). The extremal polynomial is expressed in the form of some linear combination of Chebyshev polynomials of the second kind.
This publication is cited in the following 7 articles:
V. A. Yudin, “On Polynomials of Least Deviation from Zero”, Math. Notes, 87:5 (2010), 779–783
A. G. Babenko, Yu. V. Kryakin, V. A. Yudin, “On one of Geronimus's results”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S37–S48
A. G. Babenko, Yu. V. Kryakin, “Integral approximation of the characteristic function of an interval by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S19–S38
V. E. Geit, “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$ (vtoroe soobschenie)”, Sib. zhurn. vychisl. matem., 4:2 (2001), 123–136
V. E. Geit, “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1,1]$”, Sib. zhurn. vychisl. matem., 2:3 (1999), 223–238
Franz Peherstorfer, “Trigonometric polynomial approximation in theL 1-norm”, Math Z, 169:3 (1979), 261
Franz Peherstorfer, Paul Otto Runck, Linear Spaces and Approximation / Lineare Räume und Approximation, 1978, 423