Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 13, Issue 6, Pages 817–828 (Mi mzm7186)  

This article is cited in 4 scientific papers (total in 4 papers)

The approximation of functions of many variables by their Féjér sums

V. A. Yudin

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Full-text PDF (564 kB) Citations (4)
Abstract: We construct elliptic Féjér polynomials $K_n(x)$ of $m$ variables. We prove some of their properties: a) the Féjér polynomials are positive on the $m$-dimensional torus $T^m$, $K_n(x)\ge0$, b) $\min\limits_{x\in T^m}K_n(x)=O(n^{-1})$, as $n\to\infty$, c) we calculate their norms in the spaces $L[T^m]$ and $C[T^m]$. We estimate the deviation of the Féjér sum $\sigma_n(x,f)$ from the function $f(x)$. For the space $C[T^m]$:
$$ \sup_{f\in K\operatorname{Lip}\{\alpha,C[T^m]\}}\|f(x)-\sigma_n(x,f)\|_{C[T^m]}= \begin{cases} c_{\alpha,m}n^{-\alpha}+O(n^{-1}),&0<\alpha<1,\\c_{1,m}n^{-1}\ln n+O(n^{-1}),&\alpha=1, \end{cases} $$
where $c_{\alpha,m}$ , $c_{1,m}$ are constants.
Received: 28.06.1972
English version:
Mathematical Notes, 1973, Volume 13, Issue 6, Pages 490–496
DOI: https://doi.org/10.1007/BF01163956
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. A. Yudin, “The approximation of functions of many variables by their Féjér sums”, Mat. Zametki, 13:6 (1973), 817–828; Math. Notes, 13:6 (1973), 490–496
Citation in format AMSBIB
\Bibitem{Yud73}
\by V.~A.~Yudin
\paper The approximation of functions of many variables by their F\'ej\'er sums
\jour Mat. Zametki
\yr 1973
\vol 13
\issue 6
\pages 817--828
\mathnet{http://mi.mathnet.ru/mzm7186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=324307}
\zmath{https://zbmath.org/?q=an:0274.42006|0274.42005}
\transl
\jour Math. Notes
\yr 1973
\vol 13
\issue 6
\pages 490--496
\crossref{https://doi.org/10.1007/BF01163956}
Linking options:
  • https://www.mathnet.ru/eng/mzm7186
  • https://www.mathnet.ru/eng/mzm/v13/i6/p817
  • This publication is cited in the following 4 articles:
    1. D. K. Ugulava, “Summability of Fourier series of almost-periodic functions on locally compact Abelian groups”, Russian Math. (Iz. VUZ), 60:12 (2016), 67–78  mathnet  crossref  isi
    2. Giancarlo Travaglini, “Fejer kernels for Fourier series onT n and on compact Lie groups”, Math Z, 216:1 (1994), 265  crossref
    3. A. V. Reztsov, “Nonnegative trigonometric polynomials with spherical spectrum”, Math. Notes, 54:5 (1993), 1178–1181  mathnet  crossref  mathscinet  zmath  isi
    4. L. De Michele, M. Di Natale, D. Roux, “Féjer kernels and noisy Fourier series”, Journal of Computational and Applied Mathematics, 49:1-3 (1993), 45  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :109
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025