Abstract:
We construct elliptic Féjér polynomials $K_n(x)$ of $m$ variables. We prove some of their properties: a) the Féjér polynomials are positive on the $m$-dimensional torus $T^m$, $K_n(x)\ge0$, b) $\min\limits_{x\in T^m}K_n(x)=O(n^{-1})$, as $n\to\infty$, c) we calculate their norms in the spaces $L[T^m]$ and $C[T^m]$. We estimate the deviation of the Féjér sum $\sigma_n(x,f)$ from the function $f(x)$. For the space $C[T^m]$:
$$
\sup_{f\in K\operatorname{Lip}\{\alpha,C[T^m]\}}\|f(x)-\sigma_n(x,f)\|_{C[T^m]}=
\begin{cases}
c_{\alpha,m}n^{-\alpha}+O(n^{-1}),&0<\alpha<1,\\c_{1,m}n^{-1}\ln n+O(n^{-1}),&\alpha=1,
\end{cases}
$$
where $c_{\alpha,m}$ , $c_{1,m}$ are constants.
Citation:
V. A. Yudin, “The approximation of functions of many variables by their Féjér sums”, Mat. Zametki, 13:6 (1973), 817–828; Math. Notes, 13:6 (1973), 490–496
\Bibitem{Yud73}
\by V.~A.~Yudin
\paper The approximation of functions of many variables by their F\'ej\'er sums
\jour Mat. Zametki
\yr 1973
\vol 13
\issue 6
\pages 817--828
\mathnet{http://mi.mathnet.ru/mzm7186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=324307}
\zmath{https://zbmath.org/?q=an:0274.42006|0274.42005}
\transl
\jour Math. Notes
\yr 1973
\vol 13
\issue 6
\pages 490--496
\crossref{https://doi.org/10.1007/BF01163956}
Linking options:
https://www.mathnet.ru/eng/mzm7186
https://www.mathnet.ru/eng/mzm/v13/i6/p817
This publication is cited in the following 4 articles:
D. K. Ugulava, “Summability of Fourier series of almost-periodic functions on locally compact Abelian groups”, Russian Math. (Iz. VUZ), 60:12 (2016), 67–78
Giancarlo Travaglini, “Fejer kernels for Fourier series onT n and on compact Lie groups”, Math Z, 216:1 (1994), 265
A. V. Reztsov, “Nonnegative trigonometric polynomials with spherical spectrum”, Math. Notes, 54:5 (1993), 1178–1181
L. De Michele, M. Di Natale, D. Roux, “Féjer kernels and noisy Fourier series”, Journal of Computational and Applied Mathematics, 49:1-3 (1993), 45