|
This article is cited in 4 scientific papers (total in 4 papers)
The approximation of functions of many variables by their Féjér sums
V. A. Yudin V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Abstract:
We construct elliptic Féjér polynomials $K_n(x)$ of $m$ variables. We prove some of their properties: a) the Féjér polynomials are positive on the $m$-dimensional torus $T^m$, $K_n(x)\ge0$, b) $\min\limits_{x\in T^m}K_n(x)=O(n^{-1})$, as $n\to\infty$, c) we calculate their norms in the spaces $L[T^m]$ and $C[T^m]$. We estimate the deviation of the Féjér sum $\sigma_n(x,f)$ from the function $f(x)$. For the space $C[T^m]$:
$$
\sup_{f\in K\operatorname{Lip}\{\alpha,C[T^m]\}}\|f(x)-\sigma_n(x,f)\|_{C[T^m]}=
\begin{cases}
c_{\alpha,m}n^{-\alpha}+O(n^{-1}),&0<\alpha<1,\\c_{1,m}n^{-1}\ln n+O(n^{-1}),&\alpha=1,
\end{cases}
$$
where $c_{\alpha,m}$ , $c_{1,m}$ are constants.
Received: 28.06.1972
Citation:
V. A. Yudin, “The approximation of functions of many variables by their Féjér sums”, Mat. Zametki, 13:6 (1973), 817–828; Math. Notes, 13:6 (1973), 490–496
Linking options:
https://www.mathnet.ru/eng/mzm7186 https://www.mathnet.ru/eng/mzm/v13/i6/p817
|
|