Abstract:
For the polynomials $\{p_n(t)\}_0^\infty$, orthonormalized on $[-1,1]$ with weight $p(t)=(1-t)^\alpha(1+t)^\beta\Pi_{\nu=1}^m|t-x_\nu|^{\delta_\nu}H(t)$, we obtain necessary and sufficient conditions for boundedness of the sequences of norms: 1) $\|(1-t)^\mu p_n\|_{L^r(y_m,1)}$, 2) $\|(1+t)^\mu p_n\|_{L^r(-1,y_0)}$ and 3) $\||t-x_\nu|^\mu p_n\|_{L^r(y_{\nu-1},y_\nu}$ with the conditions that $1\le r<\infty$, $\alpha$, $\beta$, $\delta_\nu>-1$ ($\nu=\overline{1,m}$), $-1<y_0<x_1<\dots<y_m<x_m<1$, $H(t)>0$ on $[-1,1]$ and $\omega(H,\delta)\delta^{-1}\in L^2(0,2)$, where $\omega(H,\delta)$ is the modulus of continuity in $C(-1,1)$ of function $H$.
Citation:
V. M. Badkov, “Boundedness in the mean of orthonormalized polynomials”, Mat. Zametki, 13:5 (1973), 759–770; Math. Notes, 13:5 (1973), 453–459
\Bibitem{Bad73}
\by V.~M.~Badkov
\paper Boundedness in the mean of orthonormalized polynomials
\jour Mat. Zametki
\yr 1973
\vol 13
\issue 5
\pages 759--770
\mathnet{http://mi.mathnet.ru/mzm7180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=326279}
\zmath{https://zbmath.org/?q=an:0272.42014|0259.33013}
\transl
\jour Math. Notes
\yr 1973
\vol 13
\issue 5
\pages 453--459
\crossref{https://doi.org/10.1007/BF01147477}
Linking options:
https://www.mathnet.ru/eng/mzm7180
https://www.mathnet.ru/eng/mzm/v13/i5/p759
This publication is cited in the following 2 articles:
V. M. Badkov, “Approximation properties of Fourier series in orthogonal polynomials”, Russian Math. Surveys, 33:4 (1978), 53–117
V. M. Badkov, “Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval”, Math. USSR-Sb., 24:2 (1974), 223–256