Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 16, Issue 5, Pages 691–701 (Mi mzm7165)  

This article is cited in 11 scientific papers (total in 11 papers)

On best approximation in classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels

V. K. Dzyadyk

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Abstract: In the metrics C and L we solve the problem of best approximation by trigonometric polynomials in classes of continuous periodic functions f(x) of the form
f(x)=1n2π0K(t)φ(xt)dt,
where the kernel K(t) is a periodic integral of a linear combination of functions that are absolutely monotonic in the intervals (,2π) and (0,),and\|\varphi\|\le1.A particularcaseofsuchkernelsforanys>0and\alpha\in(-\infty,+\infty)arekernelsoftheformK(t)=k=1cos(ktαπ2)ks,$ which for α=s generate classes of periodic functions with a bounded s-th derivative in the sense of Weyl, whereas for α=s+1 they generate conjugate classes. For various values of s and α, apart from the case s(0,1) and α[0,2][s,2s], such kernels were studied by various investigators (see [1-?12]).
Received: 21.01.1974
English version:
Mathematical Notes, 1974, Volume 16, Issue 5, Pages 1008–1014
DOI: https://doi.org/10.1007/BF01149788
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. K. Dzyadyk, “On best approximation in classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels”, Mat. Zametki, 16:5 (1974), 691–701; Math. Notes, 16:5 (1974), 1008–1014
Citation in format AMSBIB
\Bibitem{Dzy74}
\by V.~K.~Dzyadyk
\paper On best approximation in classes of periodic functions defined by integrals of a~linear combination of absolutely monotonic kernels
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 5
\pages 691--701
\mathnet{http://mi.mathnet.ru/mzm7165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=380212}
\zmath{https://zbmath.org/?q=an:0308.42001}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 5
\pages 1008--1014
\crossref{https://doi.org/10.1007/BF01149788}
Linking options:
  • https://www.mathnet.ru/eng/mzm7165
  • https://www.mathnet.ru/eng/mzm/v16/i5/p691
  • This publication is cited in the following 11 articles:
    1. P. G. Potseiko, E. A. Rovba, K. A. Smotritskii, “On the approximation of conjugate functions and their derivatives on the segment by partial sums of Fourier - Chebyshev series”, Zhurn. Belorus. gos. un-ta. Matem. Inf., 2 (2024), 6–18  mathnet
    2. Serdyuk A.S. Hrabova U.Z., “Order Estimates of the Uniform Approximations By Zygmund Sums on the Classes of Convolutions of Periodic Functions”, Carpathian Math. Publ., 13:1 (2021), 68–80  crossref  isi
    3. Anatolii Serdyuk, Igor Sokolenko, “Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness”, UMB, 17:3 (2020), 396  crossref
    4. Trigub R.M., “On the Approximation of Functions By Polynomials and Entire Functions of Exponential Type”, Ukr. Math. J., 71:2 (2019), 333–341  crossref  isi
    5. O. L. Vinogradov, “Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions”, Siberian Math. J., 58:2 (2017), 190–204  mathnet  crossref  crossref  isi  elib  elib
    6. O. L. Vinogradov, “Sharp Jackson type inequalities for approximation of classes of convolutions by entire functions of finite degree”, St. Petersburg Math. J., 17:4 (2006), 593–633  mathnet  crossref  mathscinet  zmath
    7. V. P. Motornyi, O. V. Motornaya, “On the best $L_1$-approximation by algebraic polynomials to truncated powers and to classes of functions with $L_1$-bounded derivative”, Izv. Math., 63:3 (1999), 561–582  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. V. T. Shevaldin, “Lower estimates of the widths of the classes of functions defined by a modulus of continuity”, Russian Acad. Sci. Izv. Math., 45:2 (1995), 399–415  mathnet  crossref  mathscinet  zmath  isi
    9. Nguyên Th{\d i} Thiêu Hoa, “Oscillation properties of differential operators and convolution operators, and some applications”, Math. USSR-Izv., 34:3 (1990), 609–626  mathnet  crossref  mathscinet  zmath
    10. N. P. Korneichuk, “S. M. Nikol'skii and the development of research on approximation theory in the USSR”, Russian Math. Surveys, 40:5 (1985), 83–156  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    11. N. P. Korneichuk, S. M. Nikol'skii, I. A. Shevchuk, “Vladislav Kirillovich Dzyadyk (on his sixtieth birthday)”, Russian Math. Surveys, 34:4 (1979), 213–221  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :123
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025