Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 13, Issue 3, Pages 351–357 (Mi mzm7130)  

Estimates for the coefficients of univalent functions in terms of the second coefficient

L. P. Il'ina

Leningrad State University, USSR
Abstract: For the coefficients $b_n$ of an odd function $f(z)=z+\sum^\infty_{k=1}b_kz^{2k+1}$, regular in the unit disk, we obtain the estimate
\begin{equation} |b_n|\le\frac1{\sqrt2}\sqrt{1+|b_1|^2}\exp\frac12(\delta+\frac12|b_1|^2), \quad\text{where}\;\delta=0,312, \tag{1} \end{equation}
from which it follows that $|b_n|\le1$, if $|b_1|\le0,524$. It follows from (1) that the coefficients $c_n, n=3, 4\ldots$ of a regular function $f(z)=z+\sum^\infty_{k=2}c_kz^k$, univalent in the unit desk, satisfy
\begin{equation} |b_n|\le\frac1{\sqrt2}\sqrt{1+|b_1|^2}\exp\frac12(\delta+\frac12|b_1|^2), \quad\text{where}\;\delta=0,312, \tag{2} \end{equation}
in particular, $|c_n|\le n$, if $|c_2|\le1,046$.
Received: 04.11.1972
English version:
Mathematical Notes, 1973, Volume 13, Issue 3, Pages 215–218
DOI: https://doi.org/10.1007/BF01155658
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: L. P. Il'ina, “Estimates for the coefficients of univalent functions in terms of the second coefficient”, Mat. Zametki, 13:3 (1973), 351–357; Math. Notes, 13:3 (1973), 215–218
Citation in format AMSBIB
\Bibitem{Ili73}
\by L.~P.~Il'ina
\paper Estimates for the coefficients of univalent functions in terms of the second coefficient
\jour Mat. Zametki
\yr 1973
\vol 13
\issue 3
\pages 351--357
\mathnet{http://mi.mathnet.ru/mzm7130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=318472}
\zmath{https://zbmath.org/?q=an:0271.30015|0253.30006}
\transl
\jour Math. Notes
\yr 1973
\vol 13
\issue 3
\pages 215--218
\crossref{https://doi.org/10.1007/BF01155658}
Linking options:
  • https://www.mathnet.ru/eng/mzm7130
  • https://www.mathnet.ru/eng/mzm/v13/i3/p351
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024