Abstract:
In this article it is proved that every system of convergence in measure for l2 can be made orthonormal by correction on a set of arbitrarily small measure.
\Bibitem{Nik73}
\by E.~M.~Nikishin
\paper On systems of convergence in measure for $l_2$
\jour Mat. Zametki
\yr 1973
\vol 13
\issue 3
\pages 337--340
\mathnet{http://mi.mathnet.ru/mzm7128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=317031}
\zmath{https://zbmath.org/?q=an:0265.42011|0253.42017}
\transl
\jour Math. Notes
\yr 1973
\vol 13
\issue 3
\pages 205--207
\crossref{https://doi.org/10.1007/BF01155656}
Linking options:
https://www.mathnet.ru/eng/mzm7128
https://www.mathnet.ru/eng/mzm/v13/i3/p337
This publication is cited in the following 3 articles:
A. G. Vitushkin, A. A. Gonchar, B. S. Kashin, A. I. Kostrikin, S. M. Nikol'skii, S. P. Novikov, P. L. Ul'yanov, L. D. Faddeev, “Evgenii Mikhailovich Nikishin (obituary)”, Russian Math. Surveys, 42:5 (1987), 153–160
E. M. Semenov, A. M. Shteinberg, “Norm estimates of operator blocks in Banach lattices”, Math. USSR-Sb., 54:2 (1986), 317–333
W. Kratz, R. Trautner, “Zur Konvergenz von Funktionenreihen”, Acta Mathematica Academiae Scientiarum Hungaricae, 36:1-2 (1980), 99