Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 1, Pages 27–43
DOI: https://doi.org/10.4213/mzm7099
(Mi mzm7099)
 

This article is cited in 1 scientific paper (total in 1 paper)

Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases

Ya. V. Vegner, S. B. Gashkov

M. V. Lomonosov Moscow State University
Full-text PDF (594 kB) Citations (1)
References:
Abstract: We show that any function satisfying the Lipschitz condition on a given closed interval can be approximately computed by a scheme (nonbranching program) in the basis composed of functions
$$ x-y,\quad |x|,\quad x*y=\min(\max(x,0),1)\min(\max(y,0),1), $$
and all constants from the closed interval $[0,1]$; here the complexity of the scheme is $O(1/\sqrt{\varepsilon})$, where $\varepsilon$ is the accuracy of the approximation. This estimate of complexity, is in general, order-sharp.
Keywords: Lipschitz function, (Lipshitz) continuous basis, Lipschitz condition, complexity of the approximate realization of functions, polynomial basis.
Received: 26.01.2009
Revised: 23.08.2011
English version:
Mathematical Notes, 2012, Volume 92, Issue 1, Pages 23–38
DOI: https://doi.org/10.1134/S0001434612070036
Bibliographic databases:
Document Type: Article
UDC: 519.712.4
Language: Russian
Citation: Ya. V. Vegner, S. B. Gashkov, “Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases”, Mat. Zametki, 92:1 (2012), 27–43; Math. Notes, 92:1 (2012), 23–38
Citation in format AMSBIB
\Bibitem{VegGas12}
\by Ya.~V.~Vegner, S.~B.~Gashkov
\paper Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 1
\pages 27--43
\mathnet{http://mi.mathnet.ru/mzm7099}
\crossref{https://doi.org/10.4213/mzm7099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201538}
\zmath{https://zbmath.org/?q=an:1272.68464}
\elib{https://elibrary.ru/item.asp?id=20731565}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 1
\pages 23--38
\crossref{https://doi.org/10.1134/S0001434612070036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308042500003}
\elib{https://elibrary.ru/item.asp?id=20476649}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865772252}
Linking options:
  • https://www.mathnet.ru/eng/mzm7099
  • https://doi.org/10.4213/mzm7099
  • https://www.mathnet.ru/eng/mzm/v92/i1/p27
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :175
    References:61
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024