|
Roots of the equation $f(z)=\alpha f(a)$ for the class of typically-real functions
L. Kh. Burshtein Far Eastern National University
Abstract:
Let $T_r$ be the class of functions $f(z)=z+c_2z^2+\dots$, regular in the disk $|z|<1$, real on the diameter $-1<z<1$, and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ in the remainder of the disk $|z|<1$. Let $z_f$ be the solution of $f(z)=\alpha f(a)$ on $T_r$, where $\alpha$ is any fixed complex number, $\alpha\ne0$, $\alpha\ne1$, $\alpha$ is any fixed real number, $|\alpha|<1$. We determine the region $D_{T_r}$ of values of the functional $z_f$ on the class $T_r$. Variation formulas for Stieltjes integrals due to G. M. Goluzin are used.
Received: 28.10.1969
Citation:
L. Kh. Burshtein, “Roots of the equation $f(z)=\alpha f(a)$ for the class of typically-real functions”, Mat. Zametki, 10:1 (1971), 41–52; Math. Notes, 10:1 (1971), 449–455
Linking options:
https://www.mathnet.ru/eng/mzm7065 https://www.mathnet.ru/eng/mzm/v10/i1/p41
|
|