Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 6, Pages 912–918
DOI: https://doi.org/10.4213/mzm705
(Mi mzm705)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period

A. I. Sozutov
Full-text PDF (190 kB) Citations (2)
References:
Abstract: A proper subgroup H of a group G is said to be strongly isolated if it contains the centralizer of any nonidentity element of H and 2-isolated if the conditions CG(g)H1 and 2π(CG(g)) imply that CG(g)H. An involution i in a group G is said to be finite if |iig|< (gG). In the paper we study a group G with finite involution i and with a 2-isolated locally finite subgroup H containing an involution. It is proved that at least one of the following assertions holds:
  • 1) all 2-elements of the group G belong to H;
  • 2) (G,H) is a Frobenius pair, H coincides with the centralizer of the only involution in H, and all involutions in G are conjugate;
  • 3) G=F is a locally finite Frobenius group with Abelian kernel F;
  • 4) H=V\leftthreetimes D is a Frobenius group with locally cyclic noninvariant factor D and a strongly isolated kernel V, U=O_2(V) is a Sylow 2-subgroup of the group G, and G is a Z-group of permutations of the set \Omega=\{U^g\mid g\in G\}.
Received: 05.04.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 6, Pages 833–838
DOI: https://doi.org/10.1023/A:1010290717481
Bibliographic databases:
UDC: 512.544
Language: Russian
Citation: A. I. Sozutov, “On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period”, Mat. Zametki, 69:6 (2001), 912–918; Math. Notes, 69:6 (2001), 833–838
Citation in format AMSBIB
\Bibitem{Soz01}
\by A.~I.~Sozutov
\paper On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 6
\pages 912--918
\mathnet{http://mi.mathnet.ru/mzm705}
\crossref{https://doi.org/10.4213/mzm705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1861573}
\zmath{https://zbmath.org/?q=an:1029.20017}
\elib{https://elibrary.ru/item.asp?id=5022586}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 6
\pages 833--838
\crossref{https://doi.org/10.1023/A:1010290717481}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169913100024}
Linking options:
  • https://www.mathnet.ru/eng/mzm705
  • https://doi.org/10.4213/mzm705
  • https://www.mathnet.ru/eng/mzm/v69/i6/p912
  • This publication is cited in the following 2 articles:
    1. Jabara E., “A Note on Groups Covered by Conjugates of a Proper Subgroup”, J. Algebra, 370 (2012), 171–175  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    2. V. I. Senashov, A. I. Sozutov, V. P. Shunkov, “Investigation of groups with finiteness conditions in Krasnoyarsk”, Russian Math. Surveys, 60:5 (2005), 805–848  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :191
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025