Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1971, Volume 9, Issue 5, Pages 511–520 (Mi mzm7036)  

This article is cited in 63 scientific papers (total in 63 papers)

A class of orthogonal polynomials

G. Froid
Abstract: The order of the distance between zeros of orthogonal and of quasiorthogonal polynomials is determined, and also the order of the Christoffel function if the weight function w(x)=q(x)ex satisfies certain conditions. As a special case, lower and upper bounds are found for the distance between zeros of Lαn(x)+ALαn1(x), where Lαn is the n-th order Laguerre polynomial.
Received: 01.04.1970
English version:
Mathematical Notes, 1971, Volume 9, Issue 5, Pages 295–300
DOI: https://doi.org/10.1007/BF01094355
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: G. Froid, “A class of orthogonal polynomials”, Mat. Zametki, 9:5 (1971), 511–520; Math. Notes, 9:5 (1971), 295–300
Citation in format AMSBIB
\Bibitem{Fro71}
\by G.~Froid
\paper A~class of orthogonal polynomials
\jour Mat. Zametki
\yr 1971
\vol 9
\issue 5
\pages 511--520
\mathnet{http://mi.mathnet.ru/mzm7036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=284759}
\zmath{https://zbmath.org/?q=an:0226.33014|0215.13701}
\transl
\jour Math. Notes
\yr 1971
\vol 9
\issue 5
\pages 295--300
\crossref{https://doi.org/10.1007/BF01094355}
Linking options:
  • https://www.mathnet.ru/eng/mzm7036
  • https://www.mathnet.ru/eng/mzm/v9/i5/p511
  • This publication is cited in the following 63 articles:
    1. Héctor Pijeira-Cabrera, Javier Quintero-Roba, Juan Toribio-Milane, “Differential Properties of Jacobi-Sobolev Polynomials and Electrostatic Interpretation”, Mathematics, 11:15 (2023), 3420  crossref
    2. C. P. Calderón, A. Torchinsky, “The Hausdorff–Young Inequality and Freud weights”, Acta Math. Hungar., 170:2 (2023), 681  crossref
    3. Abel Díaz-González, Juan Hernández, Héctor Pijeira-Cabrera, “Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials”, Mathematics, 11:8 (2023), 1956  crossref
    4. M. Mahmoudi, M. Ghovatmand, M. H. Noori Skandari, “Solving a class of nonlinear delay Fredholm integro-differential equations with convergence analysis”, Math. Model. Comput., 9:2 (2022), 375  crossref
    5. Juan Pablo Pinasco, Cristian Scarola, “A nodal inverse problem for measure geometric Laplacians”, Communications in Nonlinear Science and Numerical Simulation, 94 (2021), 105542  crossref
    6. S. M. Zagorodnyuk, “On Series of Orthogonal Polynomials and Systems of Classical Type Polynomials”, Ukr Math J, 73:6 (2021), 930  crossref
    7. Zexin Liu, Akil Narayan, “On the Computation of Recurrence Coefficients for Univariate Orthogonal Polynomials”, J Sci Comput, 88:3 (2021)  crossref
    8. S. M. Zagorodnyuk, “Pro ryadi za ortogonalnimi mnogochlenami ta sistemi mnogochlenіv klasichnogo tipu”, Ukr. Mat. Zhurn., 73:6 (2021), 799  crossref
    9. V. Totik, “Oscillatory behavior of orthogonal polynomials”, Acta Math. Hungar., 160:2 (2020), 453  crossref
    10. Jorge A. Borrego-Morell, Cleonice F. Bracciali, Alagacone Sri Ranga, “On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle”, Mathematics, 8:7 (2020), 1161  crossref
    11. Xu Xu, Laiyi Zhu, “Orthogonal rational functions on the extended real line and analytic on the upper half plane”, Rocky Mountain J. Math., 48:3 (2018)  crossref
    12. C. Bonan-Hamada, W.B. Jones, O. Njastad, “Survey Article: Continued fractions associated with Wiener-Levinson filters, frequency analysis, moment theory and polynomials orthogonal on the unit circle”, Rocky Mountain J. Math., 46:1 (2016)  crossref
    13. K. Castillo, F. R. Rafaeli, AIP Conference Proceedings, 1776, 2016, 090004  crossref
    14. A. Ranga, “Orthogonal polynomials with respect to a family of Sobolev inner products on the unit circle”, Proc. Amer. Math. Soc., 144:3 (2015), 1129  crossref
    15. K. Jordaan, H. Wang, J. Zhou, “Monotonicity of zeros of polynomials orthogonal with respect to an even weight function”, Integral Transforms and Special Functions, 25:9 (2014), 721  crossref
    16. Z. Ditzian, “Smoothness and Best Approximation with Respect to Freud-Type Weights, a New Approach”, Acta Math. Hungar., 143:2 (2014), 378  crossref
    17. Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, Elisabeth Ullmann, “On the convergence of generalized polynomial chaos expansions”, ESAIM: M2AN, 46:2 (2012), 317  crossref
    18. Hui Yan, Qi Gong, “Feedback Control for Formation Flying Maintenance Using State Transition Matrix”, J of Astronaut Sci, 59:1-2 (2012), 177  crossref
    19. J. Beckmann, H. N. Mhaskar, J. Prestin, “Quadrature formulas for integration of multivariate trigonometric polynomials on spherical triangles”, Int J Geomath, 3:1 (2012), 119  crossref
    20. Vilmos Totik, “Christoffel functions on curves and domains”, Trans. Amer. Math. Soc., 362:4 (2009), 2053  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :113
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025