|
Matematicheskie Zametki, 1971, Volume 9, Issue 5, Pages 483–494
(Mi mzm7033)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Accurate estimates of deviations of spline approximations to classes of differentiable functions
V. L. Velikin, N. P. Korneichuk Dnepropetrovsk State University
Abstract:
We derive the approximation on $[0,1]$ of functions $f(x)$ by interpolating spline-functions $s_r(f;x)$ of degree $2r+1$ and defect $r+1$ ($r=1,2,\dots$). Exact estimates for $|f(x)-s_r(f;x)|$ and $\|f(x)-s_r(f;x)\|_C$ on the class $W^mH_\omega$ for $m=1$, $r=1,2,\dots$ and $m=2,3$, $r=2$ for the case of convex $\omega(t)$, are derived.
Received: 06.04.1970
Citation:
V. L. Velikin, N. P. Korneichuk, “Accurate estimates of deviations of spline approximations to classes of differentiable functions”, Mat. Zametki, 9:5 (1971), 483–494; Math. Notes, 9:5 (1971), 278–284
Linking options:
https://www.mathnet.ru/eng/mzm7033 https://www.mathnet.ru/eng/mzm/v9/i5/p483
|
Statistics & downloads: |
Abstract page: | 235 | Full-text PDF : | 109 | First page: | 1 |
|