|
Matematicheskie Zametki, 1971, Volume 9, Issue 4, Pages 441–447
(Mi mzm7028)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Algebraic-polynomial approximation of functions satisfying a Lipschitz condition
N. P. Korneichuka, A. I. Polovinab a Dnepropetrovsk State University
b Kommunarskii Mining and Metallurgical Institute
Abstract:
For functions $f(x)\in KH^{(\alpha)}$ (satisfying the Lipschitz condition of order $\alpha$ ($0<\alpha<1$) with constant $K$ on $[-1, 1]$), the existence is proved of a sequence $P_n(f;\,x)$ of algebraic polynomials of degree $n=1,\,2,\,\dots$, such that $|f(x)-P_{n-1}(f;\,x)|\leqslant\sup\limits_{f\in KH^{(\alpha)}}E_n(f)[(1-x^2)^{\alpha/2}+o(1)]$ when $n\to\infty$, uniformly for $x\in[-1,\,1]$ , where $E_n(f)$ is the best approximation of $f(x)$ by polynomials of degree not higher than $n$.
Received: 18.03.1970
Citation:
N. P. Korneichuk, A. I. Polovina, “Algebraic-polynomial approximation of functions satisfying a Lipschitz condition”, Mat. Zametki, 9:4 (1971), 441–447; Math. Notes, 9:4 (1971), 254–257
Linking options:
https://www.mathnet.ru/eng/mzm7028 https://www.mathnet.ru/eng/mzm/v9/i4/p441
|
|