|
Matematicheskie Zametki, 1971, Volume 9, Issue 4, Pages 391–399
(Mi mzm7018)
|
|
|
|
A discreteness criterion for the spectrum of a quasielliptic operator
M. G. Gimadislamov Bashkir State University
Abstract:
For the spectrum of the operator
$$u=\sum_{j=1}^n{(-1)^{m_j}D_j^{2m_j}u+q(x)u},$$
to be discrete, where the mj are arbitrary positive integers such that $\sum_{j=1}^n{\frac1{2m_j}<1}$, and $q(x)\ge 1$, it is necessary and sufficient that $\int\limits_K{q(x)dx\to\infty}$ , when the cube $K$ tends to infinity while preserving its dimensions.
Received: 24.12.1969
Citation:
M. G. Gimadislamov, “A discreteness criterion for the spectrum of a quasielliptic operator”, Mat. Zametki, 9:4 (1971), 391–399; Math. Notes, 9:4 (1971), 225–229
Linking options:
https://www.mathnet.ru/eng/mzm7018 https://www.mathnet.ru/eng/mzm/v9/i4/p391
|
Statistics & downloads: |
Abstract page: | 176 | Full-text PDF : | 76 | First page: | 1 |
|